Abstract

We experimentally demonstrate planar plasmonic THz waveguides using metal films that are periodically perforated with complementary split ring resonators (CSRRs). The waveguide transmission spectra exhibit numerous transmission resonances. While the geometry is commonly used in developing negative index materials, the excitation geometry used here does not allow for conventional metamaterial response. Instead, we show that all of the observed resonances can be determined from the geometrical properties of the CSRR apertures. Surprisingly, the Bragg condition does not appear to limit the frequency extent of the observed resonances. The results suggest that metamaterial-inspired geometries may be useful for developing THz guided-wave devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  2. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [CrossRef]
  3. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
    [CrossRef] [PubMed]
  4. S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006).
    [CrossRef]
  5. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007).
    [CrossRef]
  6. Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
    [CrossRef]
  7. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  8. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
    [CrossRef] [PubMed]
  9. W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.
  10. A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
    [CrossRef] [PubMed]
  11. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [CrossRef] [PubMed]
  12. W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
    [CrossRef] [PubMed]
  13. V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  15. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  16. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
    [CrossRef] [PubMed]
  17. B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
    [CrossRef] [PubMed]
  18. W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
    [CrossRef] [PubMed]
  19. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
    [CrossRef] [PubMed]
  20. D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
    [CrossRef]
  21. R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
    [CrossRef] [PubMed]
  22. N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).

2010

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

2009

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

2008

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

2007

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007).
[CrossRef]

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
[CrossRef] [PubMed]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

2006

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

2005

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2000

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1999

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1968

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Agrafiotis, S.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

Agrawal, A.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
[CrossRef] [PubMed]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Beigang, R.

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

Beruete, M.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Chen, B.

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Cui, A.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

Eldaiki, O. M.

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

Falcone, F.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

Fan, S.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Garcia-Vidal, F. J.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Gollub, J.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Kumar, G.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

Lu, Z.

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

Maier, S. A.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Martin-Cano, D.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

Martín-Moreno, L.

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Mock, J. J.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

Moreno, E.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

Nahata, A.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
[CrossRef] [PubMed]

Navarro-Cía, M.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Nesterov, M. L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Park, G.

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

Paul, O.

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Qiu, M.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007).
[CrossRef]

Rahm, M.

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

Reinhard, B.

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

Shin, Y.

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

So, J.

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

Sorolla, M.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, R.

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Won, J.

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

Xie, Y.

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Yang, R.

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Yang, X.

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Zhao, W.

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

Zhu, W.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. A. Maier and S. R. Andrews, “Terahertz pulse propagation using Plasmon-polariton-like surface modes on structures conductive surface,” Appl. Phys. Lett. 88(25), 251120 (2006).
[CrossRef]

Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90(20), 201906 (2007).
[CrossRef]

Y. Shin, J. So, J. Won, and G. Park, “Frequency-dependent refractive index of one-dimensionally structured thick metal film,” Appl. Phys. Lett. 91(3), 031102 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. Zhu, A. Agrawal, A. Cui, G. Kumar, and A. Nahata. “Engineering the propagation properties of planar plasmonic terahertz waveguides,” IEEE J. Sel. Top. Quantum Electron. (2010), in print.

IEEE Trans. Microw. Theory Tech.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys.

D. R. Smith, J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, “Calculation and measurement of bianisotropy in a split ring resonator metamaterial,” J. Appl. Phys. 100(2), 024507 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

Nat. Photonics

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Opt. Express

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16(9), 6216–6226 (2008).
[CrossRef] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

W. Zhao, O. M. Eldaiki, R. Yang, and Z. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
[CrossRef] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17(20), 18184–18195 (2009).
[CrossRef] [PubMed]

W. Zhu, A. Agrawal, and A. Nahata, “Direct measurement of the Gouy phase shift for surface plasmon-polaritons,” Opt. Express 15(16), 9995–10001 (2007).
[CrossRef] [PubMed]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15(9), 5616–5624 (2007).
[CrossRef] [PubMed]

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, “Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures,” Opt. Express 17(8), 6101–6117 (2009).
[CrossRef] [PubMed]

Opt. Lett.

B. Reinhard, O. Paul, R. Beigang, and M. Rahm, “Experimental and numerical studies of terahertz surface waves on a thin metamaterial film,” Opt. Lett. 35(9), 1320–1322 (2010).
[CrossRef] [PubMed]

A. I. Fernández-Domínguez, E. Moreno, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz wedge plasmon polaritons,” Opt. Lett. 34(13), 2063–2065 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94(19), 197401 (2005).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative value of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other

N. Marcuvitz, Waveguide Handbook (New York: McGraw-Hill, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of a terahertz waveguide based on CSRR apertures. A semi-circular groove is used to couple a broadband THz waveform to the patterned structure. For clarity, a small section of the waveguide structure is expanded in the figure panel. The CSRR design parameters are s = 500 µm, b = 300 µm, a = 50 µm, g = 100 µm and h = 300 µm. The center-to-center spacing, d, between individual CSRRs is 400 µm. (b) a photograph of an individual CSRR fabricated in a 300 µm thick stainless steel foil.

Fig. 2
Fig. 2

(a) The experimentally measured and numerically simulated waveguide transmission spectra. Both spectra are normalized relative to the corresponding input spectra. (b) the simulated AR frequencies of the lowest order plasmonic mode (filled circles). The solid black trace corresponds to a fit to Eq. (1) with m = 1 and n = p = 0.

Fig. 3
Fig. 3

Steady state total electric field distribution in the xy plane using a sinusoidal input frequency of (a) 0.12 THz corresponding to the (1,0,0) mode (b) 0.35 THz corresponding to the (3,0,0) mode (c) 0.58 THz corresponding to the (5,0,0) mode and (d) 0.69 THz corresponding to the (6,0,0) mode and (e) 0.76 THz corresponding to the (5,0,1) mode and (f) 0.81 THz corresponding to the (7,0,0) mode.

Fig. 4
Fig. 4

Simulated waveguide transmission spectra as a function of CSRR periodicity. The red trace corresponds to a periodicity of 500µm. The blue trace corresponds to a periodicity of 700µm, and the black trace corresponds to a periodicity of 900µm.

Fig. 5
Fig. 5

The measured electric field amplitude |Ez| (a) along the x-axis at different positions along the length of the waveguide. (b) along the y-axis approximately 4 cm from the waveguide input. (c) along the z-axis at different heights above the sample surface.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ν m n p = c 2 π ( m π L ) 2 + ( n π a ) 2 + ( p π h ) 2 ,

Metrics