Abstract

An arbitrary channel selection system based on a pulse-injected semiconductor laser with a phase-locked loop (PLL) is experimentally demonstrated and characterized. Through optical injection from a tunable laser, channels formed by the frequency components of a microwave frequency comb generated in the pulse-injected semiconductor laser are individually selected and enhanced. Selections of a primary channel at the fundamental frequency of 1.2 GHz and a secondary channel in a range from 10.8 to 18 GHz are shown, where the selection is done by adjusting the injection strength from the tunable laser. Suppression ratios of 44.5 and 25.9 dB between the selected primary and secondary channels to the averaged magnitude of the unwanted channels are obtained, respectively. To show the spectral quality of the pulse-injected laser, a single sideband (SSB) phase noise of −60 dBc/kHz at an offset frequency of 25 kHz is measured. Moreover, the conversion gain between the primary and secondary channels and the crosstalk between the selected channels to the adjacent unwanted channels are also investigated. Without the need of expensive external modulators, arbitrary channel selection is realized in the proposed system where the channel spacing and selection can be continuously adjusted through tuning the controllable laser parameters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
    [Crossref]
  2. Y. S. Juan and F. Y. Lin, “Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser,” Opt. Express 18, 9664–9670 (2010).
    [Crossref] [PubMed]
  3. F. Y. Lin and M. C. Tsai, “Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers,” Opt. Express 15, 302–311 (2007).
    [Crossref] [PubMed]
  4. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
    [Crossref]
  5. P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
    [Crossref]
  6. Y. Yan, S. R. Blais, and J. Yai, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol. 25, 3283–3288 (2007).
    [Crossref]
  7. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 361–362 (2009).
    [Crossref]
  8. M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, “Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator,” Opt. Lett. 30, 8–10 (2005).
    [Crossref] [PubMed]
  9. J. Wang and J. Yao, “A tunable photonic microwave nothch filter based on all-optic mixing,” IEEE Photon. Technol. Lett. 18, 382–384 (2006).
    [Crossref]
  10. D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
    [Crossref]
  11. G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett. 19, 1008–1010 (2007).
    [Crossref]
  12. Z. Wang, K. S. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010).
    [Crossref] [PubMed]
  13. W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
    [Crossref]
  14. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.15, 604–611 (2009).
    [Crossref]
  15. F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron. 40, 682–689 (2004).
    [Crossref]
  16. Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Opt. Lett. 34, 1636–1638 (2009).
    [Crossref] [PubMed]
  17. Y. S. Juan and F. Y. Lin, “Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser,” Opt. Express 17, 18596–18605 (2009).
    [Crossref]
  18. A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
    [Crossref]
  19. N. Kashima and M. Watanabe, “Transient properties of side-mode injection locking in an FPLD,” J. Lightwave Technol. 24, 1523–1533 (2006).
    [Crossref]
  20. S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B Quantum Semiclassical Opt. 4, 149–154 (2002).
    [Crossref]
  21. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
    [Crossref]
  22. S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave frequency comb by harmonic frequency locking,” Opt. Lett. 32, 1917–1949 (2007).
    [Crossref] [PubMed]
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation,” Opt. Lett. 31, 811–813 (2006).
    [Crossref] [PubMed]
  24. S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
    [Crossref]

2010 (2)

2009 (3)

2007 (4)

2006 (4)

2005 (3)

P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
[Crossref]

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, “Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator,” Opt. Lett. 30, 8–10 (2005).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[Crossref]

2004 (3)

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron. 40, 682–689 (2004).
[Crossref]

2003 (1)

A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
[Crossref]

2002 (1)

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B Quantum Semiclassical Opt. 4, 149–154 (2002).
[Crossref]

2000 (1)

T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
[Crossref]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Andrés, M. V.

Blais, S. R.

Breglio, G.

A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
[Crossref]

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

Chan, S. C.

S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave frequency comb by harmonic frequency locking,” Opt. Lett. 32, 1917–1949 (2007).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[Crossref]

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.15, 604–611 (2009).
[Crossref]

Chiang, K. S.

Cutolo, A.

A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
[Crossref]

Delfyett, P. J.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

Delgado-Pinar, M.

Díez, A.

Eriksson, S.

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B Quantum Semiclassical Opt. 4, 149–154 (2002).
[Crossref]

Etemad, S.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

Fonjallaz, P. Y.

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.15, 604–611 (2009).
[Crossref]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Ieace, A.

A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
[Crossref]

Izutsu, M.

Juan, Y. S.

Kashima, N.

Kawanishi, T.

Kim, G. D.

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett. 19, 1008–1010 (2007).
[Crossref]

Kitayama, K.

T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
[Crossref]

Kuri, T.

T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
[Crossref]

Lee, S. S.

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett. 19, 1008–1010 (2007).
[Crossref]

Lee, W.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

Lin, F. Y.

Lindberg, A. M.

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B Quantum Semiclassical Opt. 4, 149–154 (2002).
[Crossref]

Liu, J. M.

S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave frequency comb by harmonic frequency locking,” Opt. Lett. 32, 1917–1949 (2007).
[Crossref] [PubMed]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[Crossref]

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron. 40, 682–689 (2004).
[Crossref]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Liu, Q.

Mak, P. I.

P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
[Crossref]

Martins, R. P.

P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
[Crossref]

Mielke, M.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

Minasian, R. A.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 361–362 (2009).
[Crossref]

Mora, J.

Ortega, B

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

Ortega, B.

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006).
[Crossref]

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

Popov, M.

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

Sakamoto, T.

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Takahashi, Y.

T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
[Crossref]

Tsai, M. C.

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.15, 604–611 (2009).
[Crossref]

U, S. P.

P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
[Crossref]

Wang, J.

J. Wang and J. Yao, “A tunable photonic microwave nothch filter based on all-optic mixing,” IEEE Photon. Technol. Lett. 18, 382–384 (2006).
[Crossref]

Wang, Z.

Watanabe, M.

Xia, G. Q.

Yai, J.

Yan, Y.

Yao, J.

J. Wang and J. Yao, “A tunable photonic microwave nothch filter based on all-optic mixing,” IEEE Photon. Technol. Lett. 18, 382–384 (2006).
[Crossref]

Yi, X.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 361–362 (2009).
[Crossref]

Electron. Lett. (2)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett. 45, 361–362 (2009).
[Crossref]

D. Pastor, B Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, “Tunable microwave photonic filter for noise and interference suppression in UMTS base stations,” Electron. Lett. 40, 997–999 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

F. Y. Lin and J. M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications,” IEEE J. Quantum Electron. 40, 682–689 (2004).
[Crossref]

S. C. Chan and J. M. Liu, “Microwave frequency division and multiplication using an optically injected semiconductor laser,” IEEE J. Quantum Electron. 41, 1142–1147 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett. 19, 1008–1010 (2007).
[Crossref]

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, “Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 16, 1945–1947 (2004).
[Crossref]

J. Wang and J. Yao, “A tunable photonic microwave nothch filter based on all-optic mixing,” IEEE Photon. Technol. Lett. 18, 382–384 (2006).
[Crossref]

T. Kuri, K. Kitayama, and Y. Takahashi, “60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver,” IEEE Photon. Technol. Lett. 12, 419–421 (2000).
[Crossref]

IEEE Trans. Circuits Syst. (1)

P. I. Mak, S. P. U, and R. P. Martins, “Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends,” IEEE Trans. Circuits Syst. 52, 1302–1315 (2005).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. B Quantum Semiclassical Opt. (1)

S. Eriksson and A. M. Lindberg, “Observations on the dynamics of semiconductor lasers subjected to external optical injection,” J. Opt. B Quantum Semiclassical Opt. 4, 149–154 (2002).
[Crossref]

Opt. Commun. (1)

A. Ieace, G. Breglio, and A. Cutolo, “Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating,” Opt. Commun. 221, 313–316 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Quantum Semiclassic. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997).
[Crossref]

Other (1)

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, “Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection,” IEEE J. Sel. Top. Quantum Electron.15, 604–611 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the arbitrary channel selection system. The slave laser (SL) is subject to an optical cw injection from the tunable laser (TL) and an optical pulse injection from the master laser with an electric phase-locked loop (PLL). PD: photodetector, OI: optical isolator, BS: beamsplitter, PBS: polarizing beamsplitter, HW: half-wave plate, VA: variable attenuator, FR: Faraday rotator, and A: amplifier. Solid and dashed lines indicate optical and electrical paths, respectively.

Fig. 2
Fig. 2

(Color online) (a) Power spectrum of the ML subject to the optoelectronic feedback and the power spectra of the SL when subject to (b) both the optical pulse injection and the electric modulation from the ML output, (c) only the optical pulse injection, and (d) only the electric modulation. Dashed lines: averaged magnitude of all channels.

Fig. 3
Fig. 3

(Color online) (a) Power spectrum of the P1 state of the SL subject to the optical injection from the TL. (b) Power spectrum of the SL subject to both the pulse injection with PLL from the ML and the optical injection from the TL. The P1 frequency of 18 GHz matches exactly with the frequency of the 15th channel. Dashed lines: averaged magnitude of all channels. Red curve: background level.

Fig. 4
Fig. 4

(Color online) Linear tunability between the selected frequency (channel) and the injection strength ξt .

Fig. 5
Fig. 5

(Color online) (a) Power spectrum of the P1 state of the SL subject to the optical injection from the TL. (b) Power spectrum of the SL subject to both the pulse injection with PLL from the ML and the optical injection from the TL. The P1 state has an oscillation frequency of 7.2 GHz detuned from the channels. Red curve: background level.

Fig. 6
Fig. 6

(Color online) SSB phase noise of the primarary channel (1st channel) of the ML (green), the pulse-injected SL with PLL (black), the SL with only the optical pulse injection (red), and the SL with only the electric modulation (blue), respectively.

Fig. 7
Fig. 7

(Color online) (a) Power spectrum of the SL with (black curve) and without (green curve) modulation. (b) Conversion gain for each channel. Dashed line: average conversion gain of the unwanted channels.

Metrics