Abstract

An arbitrary channel selection system based on a pulse-injected semiconductor laser with a phase-locked loop (PLL) is experimentally demonstrated and characterized. Through optical injection from a tunable laser, channels formed by the frequency components of a microwave frequency comb generated in the pulse-injected semiconductor laser are individually selected and enhanced. Selections of a primary channel at the fundamental frequency of 1.2 GHz and a secondary channel in a range from 10.8 to 18 GHz are shown, where the selection is done by adjusting the injection strength from the tunable laser. Suppression ratios of 44.5 and 25.9 dB between the selected primary and secondary channels to the averaged magnitude of the unwanted channels are obtained, respectively. To show the spectral quality of the pulse-injected laser, a single sideband (SSB) phase noise of −60 dBc/kHz at an offset frequency of 25 kHz is measured. Moreover, the conversion gain between the primary and secondary channels and the crosstalk between the selected channels to the adjacent unwanted channels are also investigated. Without the need of expensive external modulators, arbitrary channel selection is realized in the proposed system where the channel spacing and selection can be continuously adjusted through tuning the controllable laser parameters.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
    [CrossRef]
  2. Y. S. Juan, and F. Y. Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010).
    [CrossRef] [PubMed]
  3. F. Y. Lin, and M. C. Tsai, "Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers," Opt. Express 15, 302-311 (2007).
    [CrossRef] [PubMed]
  4. J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  5. P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
    [CrossRef]
  6. Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
    [CrossRef]
  7. X. Yi, and R. A. Minasian, "Microwave photonic filter with single bandpass response," Electron. Lett. 45, 361-362 (2009).
    [CrossRef]
  8. M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
    [CrossRef] [PubMed]
  9. J. Wang, and J. Yao, "A tunable photonic microwave notch filter based on all-optic mixing," IEEE Photon. Technol. Lett. 18, 382-384 (2006).
    [CrossRef]
  10. D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
    [CrossRef]
  11. G. D. Kim, and S. S. Lee, "Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators," IEEE Photon. Technol. Lett. 19, 1008-1010 (2007).
    [CrossRef]
  12. Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
    [CrossRef] [PubMed]
  13. W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
    [CrossRef]
  14. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
    [CrossRef]
  15. F. Y. Lin, and J. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
    [CrossRef]
  16. Y. S. Juan, and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
    [CrossRef] [PubMed]
  17. Y. S. Juan, and F. Y. Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009).
    [CrossRef]
  18. A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
    [CrossRef]
  19. N. Kashima, and M. Watanabe, "Transient properties of side-mode injection locking in an FPLD," J. Lightwave Technol. 24, 1523-1533 (2006).
    [CrossRef]
  20. S. Eriksson, and A. M. Lindberg, "Observations on the dynamics of semiconductor lasers subjected to external optical injection," J. Opt. B Quantum Semiclassical Opt. 4, 149-154 (2002).
    [CrossRef]
  21. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
    [CrossRef]
  22. S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
    [CrossRef] [PubMed]
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
    [CrossRef] [PubMed]
  24. S. C. Chan, and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
    [CrossRef]

2010

Y. S. Juan, and F. Y. Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010).
[CrossRef] [PubMed]

Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
[CrossRef] [PubMed]

2009

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Y. S. Juan, and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009).
[CrossRef]

X. Yi, and R. A. Minasian, "Microwave photonic filter with single bandpass response," Electron. Lett. 45, 361-362 (2009).
[CrossRef]

2007

Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
[CrossRef]

F. Y. Lin, and M. C. Tsai, "Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers," Opt. Express 15, 302-311 (2007).
[CrossRef] [PubMed]

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

G. D. Kim, and S. S. Lee, "Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators," IEEE Photon. Technol. Lett. 19, 1008-1010 (2007).
[CrossRef]

2006

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
[CrossRef] [PubMed]

N. Kashima, and M. Watanabe, "Transient properties of side-mode injection locking in an FPLD," J. Lightwave Technol. 24, 1523-1533 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

J. Wang, and J. Yao, "A tunable photonic microwave notch filter based on all-optic mixing," IEEE Photon. Technol. Lett. 18, 382-384 (2006).
[CrossRef]

2005

P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
[CrossRef]

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

S. C. Chan, and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

2004

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

F. Y. Lin, and J. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

2003

A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
[CrossRef]

2002

S. Eriksson, and A. M. Lindberg, "Observations on the dynamics of semiconductor lasers subjected to external optical injection," J. Opt. B Quantum Semiclassical Opt. 4, 149-154 (2002).
[CrossRef]

2000

T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
[CrossRef]

1997

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Andrés, M. V.

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

Blais, S. R.

Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
[CrossRef]

Breglio, G.

A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
[CrossRef]

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

Chan, S. C.

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

S. C. Chan, and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Chiang, K. S.

Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
[CrossRef] [PubMed]

Cutolo, A.

A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
[CrossRef]

Delfyett, P. J.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

Delgado-Pinar, M.

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

Díez, A.

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

Eriksson, S.

S. Eriksson, and A. M. Lindberg, "Observations on the dynamics of semiconductor lasers subjected to external optical injection," J. Opt. B Quantum Semiclassical Opt. 4, 149-154 (2002).
[CrossRef]

Etemad, S.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

Fonjallaz, P. Y.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Ieace, A.

A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
[CrossRef]

Izutsu, M.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
[CrossRef] [PubMed]

Juan, Y. S.

Y. S. Juan, and F. Y. Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009).
[CrossRef]

Kashima, N.

N. Kashima, and M. Watanabe, "Transient properties of side-mode injection locking in an FPLD," J. Lightwave Technol. 24, 1523-1533 (2006).
[CrossRef]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
[CrossRef] [PubMed]

Kim, G. D.

G. D. Kim, and S. S. Lee, "Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators," IEEE Photon. Technol. Lett. 19, 1008-1010 (2007).
[CrossRef]

Kitayama, K.

T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
[CrossRef]

Kuri, T.

T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
[CrossRef]

Lee, S. S.

G. D. Kim, and S. S. Lee, "Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators," IEEE Photon. Technol. Lett. 19, 1008-1010 (2007).
[CrossRef]

Lee, W.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

Lin, F. Y.

Y. S. Juan, and F. Y. Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009).
[CrossRef]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

F. Y. Lin, and M. C. Tsai, "Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers," Opt. Express 15, 302-311 (2007).
[CrossRef] [PubMed]

F. Y. Lin, and J. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

Lindberg, A. M.

S. Eriksson, and A. M. Lindberg, "Observations on the dynamics of semiconductor lasers subjected to external optical injection," J. Opt. B Quantum Semiclassical Opt. 4, 149-154 (2002).
[CrossRef]

Liu, J. M.

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

S. C. Chan, and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

F. Y. Lin, and J. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Liu, Q.

Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
[CrossRef] [PubMed]

Mak, P. I.

P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
[CrossRef]

Martins, R. P.

P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
[CrossRef]

Mielke, M.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

Minasian, R. A.

X. Yi, and R. A. Minasian, "Microwave photonic filter with single bandpass response," Electron. Lett. 45, 361-362 (2009).
[CrossRef]

Mora, J.

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

Popov, M.

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
[CrossRef] [PubMed]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Takahashi, Y.

T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
[CrossRef]

Tsai, M. C.

F. Y. Lin, and M. C. Tsai, "Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers," Opt. Express 15, 302-311 (2007).
[CrossRef] [PubMed]

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

U, S. P.

P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
[CrossRef]

Wang, J.

J. Wang, and J. Yao, "A tunable photonic microwave notch filter based on all-optic mixing," IEEE Photon. Technol. Lett. 18, 382-384 (2006).
[CrossRef]

Wang, Z.

Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
[CrossRef] [PubMed]

Watanabe, M.

N. Kashima, and M. Watanabe, "Transient properties of side-mode injection locking in an FPLD," J. Lightwave Technol. 24, 1523-1533 (2006).
[CrossRef]

Xia, G. Q.

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

Yai, J.

Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
[CrossRef]

Yan, Y.

Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
[CrossRef]

Yao, J.

J. Wang, and J. Yao, "A tunable photonic microwave notch filter based on all-optic mixing," IEEE Photon. Technol. Lett. 18, 382-384 (2006).
[CrossRef]

Yi, X.

X. Yi, and R. A. Minasian, "Microwave photonic filter with single bandpass response," Electron. Lett. 45, 361-362 (2009).
[CrossRef]

Electron. Lett.

X. Yi, and R. A. Minasian, "Microwave photonic filter with single bandpass response," Electron. Lett. 45, 361-362 (2009).
[CrossRef]

D. Pastor, B. Ortega, J. Capmany, P. Y. Fonjallaz, and M. Popov, "Tunable microwave photonic filter for noise and interference suppression in UMTS base stations," Electron. Lett. 40, 997-999 (2004).
[CrossRef]

IEEE J. Quantum Electron.

F. Y. Lin, and J. M. Liu, "Diverse waveform generation using semiconductor lasers for radar and microwave applications," IEEE J. Quantum Electron. 40, 682-689 (2004).
[CrossRef]

S. C. Chan, and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Lee, M. Mielke, S. Etemad, and P. J. Delfyett, "Subgigahertz channel filtering by optical heterodyne detection using a single axial mode from an injection-locked passively mode-locked semiconductor laser," IEEE Photon. Technol. Lett. 16, 1945-1947 (2004).
[CrossRef]

G. D. Kim, and S. S. Lee, "Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators," IEEE Photon. Technol. Lett. 19, 1008-1010 (2007).
[CrossRef]

J. Wang, and J. Yao, "A tunable photonic microwave notch filter based on all-optic mixing," IEEE Photon. Technol. Lett. 18, 382-384 (2006).
[CrossRef]

T. Kuri, K. Kitayama, and Y. Takahashi, "60-GHz-band full-duplex radio-on-fiber system using two-RF-port electroabsorption transceiver," IEEE Photon. Technol. Lett. 12, 419-421 (2000).
[CrossRef]

IEEE Trans. Circ. Syst.

P. I. Mak, S. P. U, and R. P. Martins, "Two-step channel selection-a novel technique for reconfigurable multistandard transceiver front-ends," IEEE Trans. Circ. Syst. 52, 1302-1315 (2005).
[CrossRef]

J. Lightwave Technol.

Y. Yan, S. R. Blais, and J. Yai, "Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings," J. Lightwave Technol. 25, 3283-3288 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, "A tutorial on microwave photonic filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

N. Kashima, and M. Watanabe, "Transient properties of side-mode injection locking in an FPLD," J. Lightwave Technol. 24, 1523-1533 (2006).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt.

S. Eriksson, and A. M. Lindberg, "Observations on the dynamics of semiconductor lasers subjected to external optical injection," J. Opt. B Quantum Semiclassical Opt. 4, 149-154 (2002).
[CrossRef]

Opt. Commun.

A. Ieace, G. Breglio, and A. Cutolo, "Silicon-based optoelectronic filter based on an electronically active waveguide embedded Bragg grating," Opt. Commun. 221, 313-316 (2003).
[CrossRef]

Opt. Express

Y. S. Juan, and F. Y. Lin, "Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser," Opt. Express 17, 18596-18605 (2009).
[CrossRef]

Y. S. Juan, and F. Y. Lin, "Demonstration of ultra-wideband (UWB) over fiber based on optical pulse-injected semiconductor laser," Opt. Express 18, 9664-9670 (2010).
[CrossRef] [PubMed]

F. Y. Lin, and M. C. Tsai, "Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers," Opt. Express 15, 302-311 (2007).
[CrossRef] [PubMed]

Opt. Lett.

M. Delgado-Pinar, J. Mora, A. Díez, and M. V. Andrés, "Tunable and reconfigurable microwave filter by use of a Bragg-grating-based acousto-optic superlattice modulator," Opt. Lett. 30, 8-10 (2005).
[CrossRef] [PubMed]

Y. S. Juan, and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

Z. Wang, K. S. Chiang, and Q. Liu, "Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator," Opt. Lett. 35, 769-771 (2010).
[CrossRef] [PubMed]

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for self oscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
[CrossRef] [PubMed]

Quantum Semiclassic. Opt.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the arbitrary channel selection system. The slave laser (SL) is subject to an optical cw injection from the tunable laser (TL) and an optical pulse injection from the master laser with an electric phase-locked loop (PLL). PD: photodetector, OI: optical isolator, BS: beamsplitter, PBS: polarizing beamsplitter, HW: half-wave plate, VA: variable attenuator, FR: Faraday rotator, and A: amplifier. Solid and dashed lines indicate optical and electrical paths, respectively.

Fig. 2
Fig. 2

(Color online) (a) Power spectrum of the ML subject to the optoelectronic feedback and the power spectra of the SL when subject to (b) both the optical pulse injection and the electric modulation from the ML output, (c) only the optical pulse injection, and (d) only the electric modulation. Dashed lines: averaged magnitude of all channels.

Fig. 3
Fig. 3

(Color online) (a) Power spectrum of the P1 state of the SL subject to the optical injection from the TL. (b) Power spectrum of the SL subject to both the pulse injection with PLL from the ML and the optical injection from the TL. The P1 frequency of 18 GHz matches exactly with the frequency of the 15th channel. Dashed lines: averaged magnitude of all channels. Red curve: background level.

Fig. 4
Fig. 4

(Color online) Linear tunability between the selected frequency (channel) and the injection strength ξt .

Fig. 5
Fig. 5

(Color online) (a) Power spectrum of the P1 state of the SL subject to the optical injection from the TL. (b) Power spectrum of the SL subject to both the pulse injection with PLL from the ML and the optical injection from the TL. The P1 state has an oscillation frequency of 7.2 GHz detuned from the channels. Red curve: background level.

Fig. 6
Fig. 6

(Color online) SSB phase noise of the primarary channel (1st channel) of the ML (green), the pulse-injected SL with PLL (black), the SL with only the optical pulse injection (red), and the SL with only the electric modulation (blue), respectively.

Fig. 7
Fig. 7

(Color online) (a) Power spectrum of the SL with (black curve) and without (green curve) modulation. (b) Conversion gain for each channel. Dashed line: average conversion gain of the unwanted channels.

Metrics