Abstract

Six-particle and eight-particle common-gap plasmonic nanoantennas are utilized to obtain a broadband spectral response when illuminated with circular and elliptical polarization. Due to the insensitivity of dipole antennas to circular polarization, the resonant structures are brought together around the common-gap to expand the spectrum of the whole system. Their ability to focus light at different frequencies is demonstrated. The spectral response is manipulated by geometrical parameters and the strength of the spectral peaks is tailored through the ellipticity of the elliptically polarized light.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
    [CrossRef]
  2. C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
    [CrossRef]
  3. K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
    [CrossRef] [PubMed]
  4. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
    [CrossRef] [PubMed]
  5. L. Wang, and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
    [CrossRef] [PubMed]
  6. H. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
    [PubMed]
  7. D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
    [CrossRef]
  8. R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
    [CrossRef]
  9. S. V. Boriskina, and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538 (2010).
    [CrossRef] [PubMed]
  10. P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
    [CrossRef] [PubMed]
  11. K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
    [CrossRef]
  12. E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).

2010

H. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[PubMed]

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

S. V. Boriskina, and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538 (2010).
[CrossRef] [PubMed]

2009

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

2008

L. Wang, and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

2007

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

2005

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

2004

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

2003

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Atwater, H.

H. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[PubMed]

Bakker, R. M.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

Biagioni, P.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

Boriskina, S. V.

S. V. Boriskina, and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538 (2010).
[CrossRef] [PubMed]

Challener, W.

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Dal Negro, L.

S. V. Boriskina, and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538 (2010).
[CrossRef] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

Drachev, V. P.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

Du`o, L.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

Hartschuh, A.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

Kotter, D. K.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

Novack, S. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Peng, C.

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Pinhero, P. J.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

Polman, A.

H. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[PubMed]

Sánchez, E. J.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Sendur, K.

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

Slafer, W. D.

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

Wang, L.

L. Wang, and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

Xie, X. S.

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Xu, X.

L. Wang, and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

Yuan, H.-K.

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

Adv. Opt. Photon.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1, 438 (2009).
[CrossRef]

Appl. Phys. Lett.

C. Peng, “Surface-plasmon resonance of a planar lollipop near-field transducer,” Appl. Phys. Lett. 94, 171106 (2009).
[CrossRef]

ASME J. Sol. Energy

D. K. Kotter, S. D. Novack, W. D. Slafer, and P. J. Pinhero, “Theory and manufacturing processes of solar nanoantenna electromagnetic collectors,”ASME J. Sol. Energy 132, 011014 (2010).
[CrossRef]

J. Appl. Phys.

K. Sendur, W. Challener, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96, 2743–2752 (2004).
[CrossRef]

J. Microsc.

L. Wang, and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nanoapertures,” J. Microsc. 229, 483–489 (2008).
[CrossRef] [PubMed]

Nat. Mater.

H. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 (2010).
[PubMed]

Opt. Lett.

S. V. Boriskina, and L. Dal Negro, “Multiple-wavelength plasmonic nanoantennas,” Opt. Lett. 35, 538 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett.

P. Biagioni, J. S. Huang, L. Du`o, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[CrossRef] [PubMed]

K. Sendur, C. Peng, and W. Challener, “Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens,” Phys. Rev. Lett. 94, 043901 (2005).
[CrossRef] [PubMed]

A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-resolution near-field Raman microscopy of singlewalled carbon nanotubes,” Phys. Rev. Lett. 90, 095503 (2003).
[CrossRef] [PubMed]

Physica B

R. M. Bakker, V. P. Drachev, H.-K. Yuan, and V. M. Shalaev, “Near-field, broadband optical spectroscopy of metamaterials,” Physica B 394, 137 (2007).
[CrossRef]

Other

E. D. Palik, Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) An oblique view of the six-particle common-gap plasmonic antenna, which is illuminated with a circularly polarized diffraction-limited incident beam propagating in the -direction. (b) Top view of the six-particle common-gap antenna composed of three dipole pairs with lengths L1, L2, and L3. (c) Top view of the eight-particle common-gap antenna.

Fig. 2
Fig. 2

Intensity distribution at the center of a nanoantenna as a function of orientation angle ϕ: (a) for linearly polarized light, (b) for circularly polarized light.

Fig. 3
Fig. 3

Spectral response of various antennas illuminated with various polarizations. The electric field intensity at the center of the gap is plotted as a function of wavelength. (a) Spectral broadening by increasing the antenna length variation for circular polarization. (b) Spectral shifting with changing antenna lengths for circular polarization. (c) A comparison of six-particle and eight-particle antenna responses for circular polarization. (d) A comparison of a six-particle antenna, which is illuminated with circular polarization and two linearly polarizations given by Eq. (1) and Eq. (3).

Fig. 4
Fig. 4

Electric field intensity distribution on the x̂-ŷ plane: (a) at λ = 400 nm, which corresponds to off-resonance, (b) at λ = 775 nm, first spectral peak in Case D, (c) at λ = 975 nm, second spectral peak in Case D, and (d) at λ = 1200 nm, third spectral peak in Case D.

Fig. 5
Fig. 5

(a) Spectral response of the antenna for elliptically polarization defined in Eq. (4). (b) A comparison of normal and oblique incidence for circular polarization.

Tables (1)

Tables Icon

Table 1 A list of nanoantenna lengths and corresponding FWHM

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E = x ^ cos ( ω t k z )
E = x ^ 2 cos ( ω t k z ) + y ^ 2 sin ( ω t k z )
E = x ^ 2 cos ( ω t k z ) + y ^ 2 cos ( ω t k z )
E = x ^ ξ ξ 2 + 1 cos ( ω t k z ) + y ^ 1 ξ 2 + 1 sin ( ω t k z )

Metrics