Abstract

We propose and experimentally demonstrate a novel lock-in detection method to avoid a beat noise in Brillouin optical correlation domain analysis (BOCDA) which appears in the sweep of the sensing position and deteriorates the measurement accuracy by distorting the acquired Brillouin gain spectrum. In our analysis, the origin of the beat noise is shown to be the fluctuation of the Brillouin gain induced by the chopping of the intensity-modulated pump wave, and the optimal relation between the modulation and the lock-in frequencies is developed as an effective solution to circumvent the beat noise.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
    [CrossRef]
  2. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  3. M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996).
    [CrossRef] [PubMed]
  4. X. Bao, M. DeMerchant, A. Brown, and T. Bremner, “Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor,” J. Lightwave Technol. 19(11), 1698–1704 (2001).
    [CrossRef]
  5. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [CrossRef]
  6. K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).
  7. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [CrossRef] [PubMed]
  8. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [CrossRef] [PubMed]
  9. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  10. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [CrossRef] [PubMed]
  11. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  12. K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
    [CrossRef]
  13. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [CrossRef]
  14. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  15. K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
    [CrossRef]
  16. K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
    [CrossRef]
  17. K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
    [CrossRef]

2011 (3)

2010 (1)

2008 (2)

2007 (2)

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

2006 (3)

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

2001 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

1996 (1)

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Abe, K.

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

Alahbabi, M. N.

Bao, X.

Bolognini, G.

Bremner, T.

Brown, A.

Chen, L.

Chin, S.

Cho, Y. T.

DeMerchant, M.

Di Pasquale, F.

Dong, Y.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

He, Z.

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

Kishi, M.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Li, H.-N.

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

Li, W.

Li, Y.

Mizuno, Y.

Newson, T. P.

Nikles, M.

Primerov, N.

Robert, P. A.

Song, K. Y.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett. 36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Y. Song, S. Chin, N. Primerov, and L. Thévenaz, “Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic grating,” J. Lightwave Technol. 28(14), 2062–2067 (2010).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Effects of intensity modulation of light source on Brillouin optical correlation domain analysis,” J. Lightwave Technol. 25(5), 1238–1246 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[CrossRef] [PubMed]

Soto, M. A.

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Thevenaz, L.

Thévenaz, L.

Zou, W.

Eng. Structures (1)

H.-N. Li, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Structures 26(11), 1647–1657 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[CrossRef]

K. Y. Song and K. Hotate, “Enlargement of measurement range in a Brillouin optical correlation domain analysis system using double lock-in amplifiers and a single-sideband modulator,” IEEE Photon. Technol. Lett. 18(3), 499–501 (2006).
[CrossRef]

K. Hotate, K. Abe, and K. Y. Song, “Suppression of signal fluctuation in Brillouin optical correlation domain analysis system using polarization diversity scheme,” IEEE Photon. Technol. Lett. 18(24), 2653–2655 (2006).
[CrossRef]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405–412 (2000).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The interaction of the pump and the probe waves near a correlation peak in the BOCDA with an intensity chop of a square wave (dashed in red) applied to the pump wave.

Fig. 2
Fig. 2

Experimental setup of a BOCDA system.

Fig. 3
Fig. 3

Sinusoidal intensity modulation of the output from the DFB LD with a direct current modulation of fm = 3 MHz.

Fig. 4
Fig. 4

Examples of the measured Brillouin gain spectrum (right) and the corresponding pump waveform (left) with different frequency ratio fm to fl : (a) 17 (b) 3.01 and (c) 2.

Fig. 5
Fig. 5

(a) Standard deviation of the signal amplitude in 20 repetitive measurements as a function of fm / fl . (b) Standard deviation of the detected Brillouin frequencies in 20 repetitive measurements as a function of fm / fl . Note that red spots correspond to fm / fl of even numbers, and the insets are the zoomed views.

Fig. 6
Fig. 6

Comparison of the distributed measurements of the BGS along a 30 m FUT by BOCDA system based on (a) ordinary lock-in detection with a fixed chopping frequency fl = 1.004987 MHz and (b) variable frequency lock-in detection with fl = fm /4.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I P u m p = I 1 ( 1 + A cos ω m t )
I P r o b e = I 0 ( 1 + A cos ω m t )
I a = I P r o b e e g B I P u m p Δ z g B Δ z I 0 I 1 ( 1 + A cos ω m t ) 2 + I 0 ( 1 + A cos ω m t )
I b = I 0 ( 1 + A cos ω m t )
V o u t = B [ τ τ + π ω l I a d t τ + π ω l τ + 2 π ω l I b d t ]         = τ τ + π ω l { C 1 ( 1 + A cos ( ω m t + φ ( τ ) ) ) 2 + C 2 ( 1 + A cos ( ω m t + φ ( τ ) ) ) } d t       τ + π ω l τ + 2 π ω l { C 2 ( 1 + A cos ( ω m t + φ ( τ ) ) ) } d t
V o u t ( τ ) = C 1 { ( 1 + A 2 2 ) π ω l + 4 A ω m cos ( ω m τ + φ ( τ ) + π ω m 2 ω l ) sin ( π ω m 2 ω l ) + A 2 2 ω m cos ( 2 ω m τ + 2 φ ( τ ) + π ω m ω l ) sin ( π ω m ω l ) } + C 2 { 2 A ω m sin ( ω m τ + φ ( τ ) + π ω m ω l ) 2 A ω m sin ( ω m τ + φ ( τ ) + π ω m ω l ) cos ( π ω m ω l ) }
V o u t = C 1 ( 1 + A 2 2 ) π ω l = B g B I 0 I 1 Δ z ( 1 + A 2 2 ) π ω l
f l = f m 2 n ( n : positive integer )

Metrics