Abstract

Except for heating losses in metal, propagating plasmons also suffer a lot from radiation losses. In this paper, electron beams are proposed as a way to excite higher-order, multipolar plasmons, which would otherwise not be excited by light, as a way to reduce radiation losses. Specifically, electron excited guided plasmons in a coupled nanoparticle chain and a symmetrical four-wire waveguide are separately discussed. In the coupled nanoparticle chain, the plasmon mode formed by quadrupolar polarized particles with low radiation is efficiently coupled by electron beams. Meanwhile, in the four-wire waveguide, the excited plasmons with zero momentum in the cross-section of each wire possess longer propagating distance than other higher-order plasmons.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal filsm of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
    [CrossRef]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef] [PubMed]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef] [PubMed]
  6. A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett. 9, 1285–1289 (2009).
    [CrossRef]
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  8. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
    [CrossRef] [PubMed]
  9. J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
    [CrossRef]
  10. W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
    [CrossRef] [PubMed]
  11. W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
    [CrossRef]
  12. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
    [CrossRef]
  13. N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
    [CrossRef]
  14. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  16. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
    [CrossRef]
  17. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
    [CrossRef]
  18. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  19. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  20. W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”
  21. P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]

2010 (2)

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

2009 (2)

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett. 9, 1285–1289 (2009).
[CrossRef]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

2006 (3)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

2003 (3)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2002 (1)

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

2001 (1)

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal filsm of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1999 (1)

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

1998 (1)

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

1972 (1)

P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Araya, K.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Atwater, H. A.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal filsm of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

Cai, W.

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

Chen, Y.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Christy, R. W.

P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

García de Abajo, F. J.

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett. 9, 1285–1289 (2009).
[CrossRef]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

Johnson, P. C.

P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Laleut, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

Lezec, H. J.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Manjavacas, A.

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett. 9, 1285–1289 (2009).
[CrossRef]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Polman, A.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Requicha, A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

Ross, C. E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Sainidou, R.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

van Wijngaarden, J. T.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Verhagen, E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

Wang, L.

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

Xiang, Y.

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

Xu, J.

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

Yamamoto, N.

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

Zhang, X.

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, “Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy,” Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Nano. Lett. (3)

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano. Lett. 9, 1176–1181 (2009).
[CrossRef] [PubMed]

A. Manjavacas and F. J. García de Abajo, “Robust plasmon waveguides in strongly interacting nanowire arrays,” Nano. Lett. 9, 1285–1289 (2009).
[CrossRef]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano. Lett. 6, 1113–1115 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Nature (London) (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laleut, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature (London) 440, 508–511 (2006).
[CrossRef]

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Phys. Rev. B (6)

N. Yamamoto, K. Araya, and F. J. García de Abajo, “Photon emission from silver particles induced by a high-energy electron beam,” Phys. Rev. B 64, 205419 (2001).
[CrossRef]

W. Cai, L. Wang, X. Zhang, J. Xu, and F. J. García de Abajo, “Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs,” Phys. Rev. B 82, 125454 (2010).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal filsm of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086–6102 (1999).
[CrossRef]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

P. C. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef] [PubMed]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in lymphogenous dielectrics,” Phys. Rev. Lett. 80, 5180–5183 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys. 82, 209–275 (2010).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

W. Cai, L. Wang, Y. Xiang, X. Zhang, J. Xu, and F. J. García de Abajo are preparing a paper to be called “Propagating dark plasmons generation by electron beams.”

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of a coupled gold nanoparticle chain with an electron beam of 50 keV passing close to one of the end. The number of particle with diameter 160 nm in a single chain is chosen as 51, and the gap distance between horizontal neighbor particles is 5 nm.

Fig. 2
Fig. 2

(a) Photon energy resolved EELS probability dependent on the gap distance between two particle chains. Higher and lower energy bands shown by the maximum of energy loss are corresponding to horizontal coupled dipolar and quadrupolar plasmons, respectively. (b) EELS probability in the geometry shown in Fig. 1 with d = 20 nm. There exits two plasmon modes named after I and II with energy 1.49 eV and 2.2 eV, respectively. (c) The electric near-field distribution and the charge build-ups for plasmon modes I and II, respectively. Each particle shows quadrupolar distributions for mode I, whereas dipolar distributions for mode II.

Fig. 3
Fig. 3

Guided plasmons generation by an electron beam in a coupled nanoparticle chain. (a) Photon energy resolved electric near-field distribution along the chain in the transversal gap. (b) The dispersion curve of surface plasmons propagating along the chain. (c) Time evolution of excited surface plasmons.

Fig. 4
Fig. 4

Higher-order plasmons generation by electron beams in a symmetrical four-wire system. (a) Schematic of an electron beam of 100 keV passing thought the center point of symmetrical distribution of four nanowires with 160 nm in diameter, and the gap distance of neighbor wire is 10 nm. (b) Parallel momentum k || and photon energy resolved EELS probability. Propagating plasmons excited by the electron beam is label as A–F, respectively. (c) The induced electric near-field and charge ordering of excited plasmons in the cross-section of the wires.

Tables (1)

Tables Icon

Table 1 Comparison of Propagation Distances for Excited Plasmons by Electron Beams in the Excitation Scheme Fig. 4(a)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ ( ω ) = e π h ¯ ω dt Re { e i ω t v E ind ( r e ( t ) , ω ) } ,
Γ ( ω ) = 0 d k Γ ( k , ω ) .
Γ ( k , ω ) = e π 2 h ¯ ω dt Re { e i ω t v E ind ( k , b , vt , ω ) }
E ind ( k , b , vt , ω ) = dx e i k x E ind ( x , b , vt , ω )

Metrics