Abstract

The Raman gain based polarization pulling process in a copropagating scheme is investigated. We map the degree of polarization, the angle between the signal and pump output Stokes vectors, the mean signal gain and its standard deviation considering the entire Raman gain bandwidth. We show that, in the undepleted regime (signal input power ∼ 1 μW), the degree of polarization is proportional to the pump power and changes with the signal wavelength, following the Raman gain shape. In the depleted regime (signal input power ≳ 1mW), the highest values for the degree of polarization are no more observed for the highest pump powers. Indeed, we show that exists an optimum pump power leading to a maximum degree of polarization.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, P. Martelli, and S. M. Pietralunga, “Polarization stabilization in optical communications systems,” J. Lightwave Technol. 24, 4172–4183 (2006).
    [CrossRef]
  2. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000).
    [CrossRef]
  3. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
    [CrossRef]
  4. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010).
    [CrossRef] [PubMed]
  5. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010).
    [CrossRef] [PubMed]
  6. V. V. Kozlov, J. Nuno, J. D. Ania-Castanon, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett. 35, 3970–3972 (2010).
    [CrossRef] [PubMed]
  7. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008).
    [CrossRef] [PubMed]
  8. Q. Lin and G. P. Agrawal, “Statistics of polarization dependent gain in fiber-based Raman amplifiers,” Opt. Lett. 28, 227–229 (2003).
    [CrossRef] [PubMed]
  9. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009).
    [CrossRef] [PubMed]
  10. V. V. Kozlov, J. Nuno, J. D. Ania-Castanon, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011).
    [CrossRef]
  11. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
    [CrossRef]
  12. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol. 24, 4055–4063 (2006).
    [CrossRef]
  13. M. Fugihara and A. N. Pinto, “Low-cost Raman amplifier for CWDM systems,” Microw. Opt. Technol. Lett. 50, 297–301 (2008).
    [CrossRef]
  14. M. Fugihara and A. N. Pinto, “Attenuation fitting functions,” Microw. Opt. Technol. Lett. 51, 2294–2296 (2009).
    [CrossRef]
  15. N. J. Muga, M. C. Fugihara, Mário F. S. Ferreira, and A. N. Pinto, “Non-Gaussian ASE noise in Raman amplification systems,” J. Lightwave Technol. 27, 3389–3398 (2009).
    [CrossRef]

2011

V. V. Kozlov, J. Nuno, J. D. Ania-Castanon, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

2010

2009

2008

2006

2005

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
[CrossRef]

2003

2000

Agrawal, G. P.

Ania-Castanon, J. D.

Assémat, E.

Bennink, R. S.

Boyd, R. W.

Cirigliano, M.

Fatome, J.

Ferrario, M.

Ferreira, Mário F. S.

Fisher, R. A.

Fugihara, M.

M. Fugihara and A. N. Pinto, “Attenuation fitting functions,” Microw. Opt. Technol. Lett. 51, 2294–2296 (2009).
[CrossRef]

M. Fugihara and A. N. Pinto, “Low-cost Raman amplifier for CWDM systems,” Microw. Opt. Technol. Lett. 50, 297–301 (2008).
[CrossRef]

Fugihara, M. C.

Galtarossa, A.

Haelterman, M.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
[CrossRef]

Heebner, J. E.

Jauslin, H. R.

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010).
[CrossRef] [PubMed]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
[CrossRef]

Kozlov, V. V.

Lagrange, S.

Lin, Q.

Marazzi, L.

Martelli, P.

Martinelli, M.

Millot, G.

Morin, P.

Muga, N. J.

Nuno, J.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol. 24, 4055–4063 (2006).
[CrossRef]

Picozzi, A.

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010).
[CrossRef] [PubMed]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
[CrossRef]

Pietralunga, S. M.

Pinto, A. N.

M. Fugihara and A. N. Pinto, “Attenuation fitting functions,” Microw. Opt. Technol. Lett. 51, 2294–2296 (2009).
[CrossRef]

N. J. Muga, M. C. Fugihara, Mário F. S. Ferreira, and A. N. Pinto, “Non-Gaussian ASE noise in Raman amplification systems,” J. Lightwave Technol. 27, 3389–3398 (2009).
[CrossRef]

M. Fugihara and A. N. Pinto, “Low-cost Raman amplifier for CWDM systems,” Microw. Opt. Technol. Lett. 50, 297–301 (2008).
[CrossRef]

Pitois, S.

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol. 24, 4055–4063 (2006).
[CrossRef]

Sugny, D.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized backward Raman amplification in randomly birefringent fibers,” J. Lightwave Technol. 24, 4055–4063 (2006).
[CrossRef]

Wabnitz, S.

Europhys. Lett.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

M. Fugihara and A. N. Pinto, “Low-cost Raman amplifier for CWDM systems,” Microw. Opt. Technol. Lett. 50, 297–301 (2008).
[CrossRef]

M. Fugihara and A. N. Pinto, “Attenuation fitting functions,” Microw. Opt. Technol. Lett. 51, 2294–2296 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) - Undepleted regime (signal input power equal to 1μW): output pump SOP is represented as a filled square. (b) - Depleted regime (signal input power equal to 1mW): output pump SOPs are represented as filled squares (for λs = 1510 nm) and empty triangles (for λs = 1550 nm). Output SOPs corresponding to unpolarized input signals (SOPs uniformly distributed over the Poincaré sphere) at wavelengths λs = 1510 nm and λs = 1550 nm are represented as filled and empty circles, respectively. Pump at wavelength λp = 1450 nm, input SOP equal to (0,1,0), and optical power equal to 8 W.

Fig. 2
Fig. 2

(a) - Signal output DOP contour map; (b) - Contour map of the mean angle in radians between the signal and pump output Stokes vectors. Signal input DOP equal to 0, signal input power equal to 1 μW, and pump wavelength equal to 1450 nm.

Fig. 3
Fig. 3

(a) - Mean signal gain; (b) - Standard deviation gain. Input signal power equal to 1 μW, pump wavelength equal to 1450 nm, and pump powers equal to 0.1, 1, 4, 8 and 12 W (asterisks, crosses, circles, squares and triangles, respectively).

Fig. 4
Fig. 4

(a) - Signal output DOP contour map; (b) - Pump output DOP contour map; (c) -Contour map of the mean angle in radians between the signal and pump output Stokes vectors. Signal input DOP equal to 0, signal input power equal to 1 mW, pump input DOP equal to 1, and pump wavelength equal to 1450 nm.

Fig. 5
Fig. 5

(a) - Mean signal gain. (b) - Standard deviation gain. Signal input power equal to 1 mW, pump wavelength equal to 1450 nm, and pump powers equal to 0.1, 1, 4, 8 and 12 W (asterisks, crosses, circles, squares and triangles, respectively).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P / d z = α ( ω p ) P ω p / ( 2 ω s ) g R ( Ω ) ( | P | S + | S | P ) + ( ω p b + γ p W p N L ) × P ,
d S / d z = α ( ω s ) S + 1 / 2 g R ( Ω ) ( | S | P + | P | S ) + ( ω s b + γ s W s N L ) × S ,
d β i / d z = ρ β i + σ η i , i = 1 , 2
g R ( Ω ) = i = 1 N a i exp ( ( Ω m i ) 2 2 σ i 2 ) ,
α ( ω ) = α R ( ω ) + α O H ( ω ) + α W G ( ω ) + α I R ( ω ) + α U V ( ω ) ,

Metrics