Abstract

Ink-jet printing of optical ink over SU-8 pillars is here proposed as a technology for obtaining microlenses with shape control. To demonstrate the flexibility of this method, microlenses with five different contour shapes (ranging from circular and elliptical to toric or more advanced geometries) have been fabricated. Furthermore, the optical properties of the different fabricated lenses have been experimentally investigated. Focal distance, numerical aperture (NA) and full-width at half maximum (FWHM) of the microlenses have been determined. Arrays of microlenses showed an identical behavior with a standard deviation in the total intensity of only 7%. Additionally, the focal plane of the fabricated symmetric microlenses and the Sturm interval of the non-symmetric ones have been obtained. The experimental results demonstrate the validity and flexibility of the proposed technology.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
    [CrossRef] [PubMed]
  2. B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
    [CrossRef]
  3. W. R. Cox, T. Chen, C. Guan, D. J. Hayes, R. E. Hoenigman, B. T. Teipen, and D. L. MacFarlane, “Micro-jet printing of refractive microlenses,” in Proceedings of OSA Diffractive Optics and Micro-optics Topical Meeting, Kailua-Kona, Hawaii, June 1998.
  4. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
    [CrossRef]
  5. A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
    [CrossRef]
  6. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
    [CrossRef] [PubMed]
  7. S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
    [CrossRef] [PubMed]
  8. E. Schonbrun, P. E. Steinvurzel, and K. B. Crozier, “A microfluidic fluorescence measurement system using an astigmatic diffractive microlens array,” Opt. Express 19(2), 1385–1394 (2011).
    [CrossRef] [PubMed]
  9. J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
    [CrossRef]
  10. S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
    [CrossRef]
  11. A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
    [CrossRef]
  12. V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
    [CrossRef] [PubMed]
  13. L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of polymeric micro structures by controlled drop on demand inkjet printing,” in Proceedings of 22nd Micromechanics and Micro systems Europe Workshop, Toensberg, Norway, June 2011.
  14. M. Katz, Introduction to Geometrical Optics (World Scientific Publishing Co., 2002), Chap. 8.
  15. A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
    [CrossRef]

2011

2010

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

2009

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

2008

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

2007

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

2005

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

2004

B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
[CrossRef]

J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004).
[CrossRef] [PubMed]

2003

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Barretto, R. P. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Biittgenbach, S.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

Boiko, D. L.

Brauer, N. B.

Brugger, J.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
[CrossRef]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Buttgenbach, S.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

Büttgenbach, S.

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

Cadarso, V. J.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

Camou, S.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Chao, C.-K.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Charbon, E.

Chen, W.-C.

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

Crozier, K. B.

de Gans, B. J.

B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
[CrossRef]

Descour, M. R.

Dominguez, C.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

Duineveld, P. C.

B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
[CrossRef]

Fakhfouri, V.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 1(2), 259–269 (2011).
[CrossRef]

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Fang, W.

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

Fujii, T.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Fujita, H.

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Gruetzner, G.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Grutzner, G.

Hu, J.-Y.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Hung, S.-Y.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Johnson, D. W.

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

Kärkkäinen, A. H. O.

Kim, J. Y.

Kim, J.Y.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Lee, S.-Y.

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

Lin, C.-P.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Llobera, A.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

Messerschmidt, B.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Ostrzinski, U.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Pfeiffer, K.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Plaza, J. A.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

V. J. Cadarso, A. Llobera, G. Villanueva, C. Dominguez, and J. A. Plaza, “3-D modulable PDMS-based microlens system,” Opt. Express 16(7), 4918–4929 (2008).
[CrossRef] [PubMed]

Rantala, J. T.

Rogers, J. D.

Schnitzer, M. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Schonbrun, E.

Schubert, U. S.

B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
[CrossRef]

Steinvurzel, P. E.

Tkaczyk, T.

Tung, H.-W.

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

Vila, J.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

Villanueva, G.

Voigt, A.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Wilke, R.

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

Yang, H.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Zinoviev, K.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

B. J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Adv. Mater. (Deerfield Beach Fla.) 16(3), 203–213 (2004).
[CrossRef]

IEEE Photon. Tech. Lett.

A. Llobera, R. Wilke, D. W. Johnson, and S. Büttgenbach, “Polymer microlenses with modified micromolding in capillaries technology,” IEEE Photon. Tech. Lett. 17(12), 2628–2630 (2005).
[CrossRef]

IEEE Photonic Tech L.

S.-Y. Lee, W.-C. Chen, H.-W. Tung, and W. Fang, “Microlens with tunable astigmatism,” IEEE Photonic Tech L. 15(18), 1383–1385 (2007).
[CrossRef]

IEEE Photonic Tech. Lett.

A. Llobera, V. J. Cadarso, K. Zinoviev, C. Dominguez, S. Buttgenbach, J. Vila, J. A. Plaza, and S. Biittgenbach, “Poly(Dimethylsiloxane) waveguide cantilevers for optomechanical sensing,” IEEE Photonic Tech. Lett. 21(2), 79–81 (2009).
[CrossRef]

Lab Chip

S. Camou, H. Fujita, and T. Fujii, “PDMS 2D optical lens integrated with microfluidic channels: principle and characterization,” Lab Chip 3(1), 40–45 (2003).
[CrossRef] [PubMed]

Microelectron. Eng.

A. Voigt, U. Ostrzinski, K. Pfeiffer, J.Y. Kim, V. Fakhfouri, J. Brugger, and G. Gruetzner, “New inks for the direct drop-on-demand fabrication of polymer lenses,” Microelectron. Eng. 88(8) 2174-2179 (2010).
[CrossRef]

Nat. Methods

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods 6(7), 511–512 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Sens. Act. A Phys.

J.-Y. Hu, C.-P. Lin, S.-Y. Hung, H. Yang, and C.-K. Chao, “Semi-ellipsoid microlens simulation and fabrication for enhancing optical fiber coupling efficiency,” Sens. Act. A Phys. 147, 93–98 (2008).
[CrossRef]

Other

W. R. Cox, T. Chen, C. Guan, D. J. Hayes, R. E. Hoenigman, B. T. Teipen, and D. L. MacFarlane, “Micro-jet printing of refractive microlenses,” in Proceedings of OSA Diffractive Optics and Micro-optics Topical Meeting, Kailua-Kona, Hawaii, June 1998.

L. Jacot-Descombes, M. R. Gullo, V. J. Cadarso, and J. Brugger, “Fabrication of polymeric micro structures by controlled drop on demand inkjet printing,” in Proceedings of 22nd Micromechanics and Micro systems Europe Workshop, Toensberg, Norway, June 2011.

M. Katz, Introduction to Geometrical Optics (World Scientific Publishing Co., 2002), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the proposed lenses with defined contour shapes: (a) circular contour shape, (b) toric contour shape, (c) elliptic contour shape, and (d) a system consisting on two crossed lenses with elliptic shape.

Fig. 2
Fig. 2

(a) SU-8 platforms with different shapes are fabricated by standard photolithography process. (b) Aligned IJP of the epoxy based ink is done in the different platforms. (c) The locally deposited polymer is cross-linked.

Fig. 3
Fig. 3

SEM images of (a) a toric lens, and (b) two identical lenses fabricated on platforms with elliptic shape. (c) Profile of 5 different circular lenses.

Fig. 4
Fig. 4

(a) CCD image capturing the focal plane of an array of 3x3 microlenses fabricated over platforms with circular contour shapes and (b) the 3D spatial reconstruction of the intensity distribution. (c) CCD image capturing the focal plane of a microlens fabricated over a platform with annular contour shape.

Fig. 5
Fig. 5

CCD images of the interval of Sturm of a microlens fabricated over elliptic platforms including: (a) the VLF, (b) the CLC and (c) the HLF.

Fig. 6
Fig. 6

CCD images of the interval of Sturm of a microlens fabricated over tilted elliptic platforms including: (a) the HLF, (b) the CLC and (c) the VLF.

Fig. 7
Fig. 7

CCD images of the interval of Sturm of a microlens consisting on two ellipses crossed in the center including: (a) the first combination of the HLF and the VLF, (b) the CLC, and (c) the second combination of the VLF and the HLF.

Metrics