Abstract

We demonstrate the transfer of single photon triggered electrical pulses from a superconducting nanowire single photon detector (SNSPD) to a single flux quantum (SFQ) pulse. We describe design and test of a digital SFQ based SNSPD readout circuit and demonstrate its correct operation. Both circuits (SNSPD and SFQ) operate under the same cryogenic conditions and are directly connected by wire bonds. A future integration of the present multi-chip configuration seems feasible because both fabrication process and materials are very similar. In contrast to commonly used semiconductor amplifiers, SFQ circuits combine very low power dissipation (a few microwatts) with very high operation speed, thus enabling count-rates of several gigahertz. The SFQ interface circuit simplifies the SNSPD readout and enables large numbers of detectors for future compact multi-pixel systems with single photon counting resolution. The demonstrated circuit has great potential for scaling the present interface solution to 1,000 detectors by using a single SFQ chip.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
    [CrossRef]
  2. G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [CrossRef]
  3. R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
    [CrossRef] [PubMed]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef] [PubMed]
  5. S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
    [CrossRef]
  6. H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
    [CrossRef]
  7. A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
    [CrossRef]
  8. L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
    [CrossRef]
  9. M. Freebody, “Superconductors strengthen single-photon detectors,” Photonics Spectra 45, 51–53 (2011).
  10. H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
    [CrossRef]
  11. H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
    [CrossRef]
  12. M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
    [CrossRef]
  13. P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
    [CrossRef]
  14. F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
    [CrossRef]
  15. M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
    [CrossRef]
  16. T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
    [CrossRef]
  17. S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
    [CrossRef]
  18. A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
    [CrossRef]
  19. H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
    [CrossRef]
  20. H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
    [CrossRef]
  21. T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond. 15, 344–347 (2005).
    [CrossRef]
  22. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
    [CrossRef]
  23. T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
    [CrossRef]

2011

M. Freebody, “Superconductors strengthen single-photon detectors,” Photonics Spectra 45, 51–53 (2011).

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

2010

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

2009

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

2008

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

2007

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

2005

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond. 15, 344–347 (2005).
[CrossRef]

R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[CrossRef] [PubMed]

2004

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Afzelius, M.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

amd Marsili, P.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Anders, S.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Bartolf, H.

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

Blamire, M.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Buchholz, F.-I.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Bunyk, P.

P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
[CrossRef]

Carelli, F.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Castellano, M. G.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Chang, J.

L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Christoph, S.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Claudon, J.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Crete, D.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Cristino, R.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Crocoll, E.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Dauler, E.

L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

de Riedmatten, H.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Divochiy, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Drung, D.

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Ebert, B.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Engel, A.

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

Engert, S.

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

Febvre, P.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Fiore, A.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Freebody, M.

M. Freebody, “Superconductors strengthen single-photon detectors,” Photonics Spectra 45, 51–53 (2011).

Fritzsch, L.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Fujimaki, A.

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Gaggero, A.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Gippius, N. A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Gisin, N.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Gol’tsman, G.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

Gol’utsman, G.

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Gruber, S.

Haas, P.

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Hadfield, R.

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[CrossRef] [PubMed]

Hashimoto, Y.

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Herr, A.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Hofherr, M.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Honjo, T.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Hubers, H.-W.

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Huebers, H.-W.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

Ili’chev, E.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Ilin, K.

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

Jiang, L.

L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Kaurova, N.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Kazumasa, M.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

Kirste, A.

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Kohlmann, J.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Korneev, A.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Kunert, J.

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Leoni, R.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Likharev, K.

P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
[CrossRef]

Lipatov, A.

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

Mattioli, F.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

Meyer, H.-G.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Miki, S.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Miller, A.

Minaeva, O.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Mirin, R.

Nam, S.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

R. Hadfield, M. Stevens, S. Gruber, A. Miller, R. Schwall, R. Mirin, and S. Nam, “Single photon source characterization with a superconducting single photon detector,” Opt. Express 13, 10846–10853 (2005).
[CrossRef] [PubMed]

Niemeyer, J.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Okunev, O.

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

Ortlepp, T.

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond. 15, 344–347 (2005).
[CrossRef]

Poizat, J. P.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Rall, D.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

Rogalla, H.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Sangouard, N.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Schilling, A.

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

Schubert, M.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Schurig, T.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Schwall, R.

Seleznev, V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Semenov, A.

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Semenov, A. V.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Siegel, M.

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

Stevens, M.

Stolz, R.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Takesue, H.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Tarkhov, M.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

Tarte, E.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

ter Brake, H.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Terai, H.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
[CrossRef]

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Toepfer, H.

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Uhlmann, F.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Uhlmann, H.

T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond. 15, 344–347 (2005).
[CrossRef]

Villegier, J.-C.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Voronov, B.

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wang, Z.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
[CrossRef]

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Wetzstein, O.

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

Williams, C.

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

Wuensch, S.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Yamashita, T.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

Yorozu, S.

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Yoshikawa, N.

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

Zagoskin, A.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Zbinden, H.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Zhang, Q.

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

Zinoviev, D.

P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
[CrossRef]

Zorin, A.

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Appl. Phys. Lett.

H. Terai, S. Miki, T. Yamashita, M. Kazumasa, and Z. Wang, “Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors,” Appl. Phys. Lett. 97, 112510 (2010).
[CrossRef]

M. Tarkhov, J. Claudon, J. P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A. V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors,” Appl. Phys. Lett. 92, 241112 (2008).
[CrossRef]

H. Terai, Z. Wang, Y. Hashimoto, S. Yorozu, A. Fujimaki, and N. Yoshikawa, “Timing jitter measurement of single-flux-quantum pulse in Josephson transmission line,” Appl. Phys. Lett. 84, 2133–2135 (2004).
[CrossRef]

G. Gol’utsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Eur. Phys. J. B

A. Semenov, A. Engel, H.-W. Huebers, K. Ilin, and M. Siegel, “Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips,” Eur. Phys. J. B 47, 495–501 (2005).
[CrossRef]

IEEE Trans. Appl. Super-cond.

T. Ortlepp, S. Wuensch, M. Schubert, P. Febvre, B. Ebert, J. Kunert, E. Crocoll, H.-G. Meyer, M. Siegel, and F. Uhlmann, “Superconductor-to-semiconductor interface circuit for high fata rates,” IEEE Trans. Appl. Super-cond. 19, 28–34 (2009).
[CrossRef]

IEEE Trans. Appl. Supercond.

T. Ortlepp and H. Uhlmann, “Noise induced timing jitter: a general restriction for high speed RSFQ devices,” IEEE Trans. Appl. Supercond. 15, 344–347 (2005).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and R. Sobolewski, “Fabrication and properties of an ultrafast NbN hot-electron single-photon detector,” IEEE Trans. Appl. Supercond. 11, 574–577 (2001).
[CrossRef]

T. Ortlepp, O. Wetzstein, S. Engert, J. Kunert, and H. Toepfer, “Reduced power consumption in superconducting electronics,” IEEE Trans. Appl. Supercond. 21, 770–775 (2011).
[CrossRef]

H. Terai, S. Miki, and Z. Wang, “Readout electronics using single-flux-quantum circuit technology for superconducting single-photon detector array,” IEEE Trans. Appl. Supercond. 19, 350–353 (2009).
[CrossRef]

Int. J. High Speed Electron. Syst.

P. Bunyk, K. Likharev, and D. Zinoviev, “RSFQ logic/memory family: a new technology: physics and devices,” Int. J. High Speed Electron. Syst. 11, 257–306 (2001).
[CrossRef]

J. Appl. Phys.

F. Mattioli, R. Leoni, A. Gaggero, M. G. Castellano, F. Carelli, P. amd Marsili, and A. Fiore, “Electrical characterization of superconducting single-photon detectors,” J. Appl. Phys. 101, 054302 (2007).
[CrossRef]

M. Hofherr, D. Rall, K. Ilin, M. Siegel, A. Semenov, H.-W. Huebers, and N. A. Gippius, “Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses,” J. Appl. Phys. 108, 014507 (2010).
[CrossRef]

J. Mod. Opt.

A. Semenov, P. Haas, H.-W. Hubers, K. Ilin, M. Siegel, A. Kirste, D. Drung, T. Schurig, and A. Engel, “Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector,” J. Mod. Opt. 56, 345–351 (2009).
[CrossRef]

Nat. Photonics

H. Takesue, S. Nam, Q. Zhang, R. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1, 343–348 (2007).
[CrossRef]

R. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef] [PubMed]

Opt. Express

Photonics Spectra

M. Freebody, “Superconductors strengthen single-photon detectors,” Photonics Spectra 45, 51–53 (2011).

Phys. Rev. A

L. Jiang, E. Dauler, and J. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A 75, 062325 (2007).
[CrossRef]

Phys. Rev. B

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel, H.-W. Huebers, and A. Semenov, “Current-assisted thermally activated flux liberation in ultrathin nanopatterned NbN superconducting meander structures,” Phys. Rev. B 81, 024502 (2010).
[CrossRef]

Phys. Rev. Lett.

S. Christoph, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190503 (2007).
[CrossRef]

Physica C

S. Anders, M. Blamire, F.-I. Buchholz, D. Crete, R. Cristino, P. Febvre, L. Fritzsch, A. Herr, E. Ili’chev, J. Kohlmann, J. Kunert, H.-G. Meyer, J. Niemeyer, T. Ortlepp, H. Rogalla, T. Schurig, M. Siegel, R. Stolz, E. Tarte, H. ter Brake, H. Toepfer, J.-C. Villegier, A. Zagoskin, and A. Zorin, “European roadmap on superconducting electronics: status and perspectives,” Physica C 470, 2079–2126 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the SFQ circuit with connected SNSPD (a) and microphotograph of the SFQ circuit (b). The blue crosses denote Josephson junctions.

Fig. 2
Fig. 2

Measured sensitivity of the SFQ readout circuit versus bias supply current. The traces correspond to different amplitudes of the applied input current.

Fig. 3
Fig. 3

Experimental test-setup for evaluating the digital detection of single photons.

Fig. 4
Fig. 4

Illustration of both chips connected by wire bonds (a) and MCM mounted on a brass table (b). Detailed pictures show the central section of the SNSPD (c) and of the SFQ circuit (d), respectively. The SFQ chip supports four individual input channels, of which only one is used in this experiment.

Fig. 5
Fig. 5

The measured output data of the SFQ circuit is shown together with the modulation signal for the laser. Each jump in the voltage trace corresponds to an absorbed photon. Traces (a) and (b) show data records for detector normalized bias currents of 69.5% and 72.8%, respectively. Each circle in (c) denotes an individual measurement and the line shows a fit with theory.

Fig. 6
Fig. 6

Measured digital output data for a sine-wave modulated optical input signal. The average pulse density is used to reconstruct the photon density of the input signal.

Metrics