Abstract

Tunable multi-chamber microfluidic membrane microlenses with achromaticity over a given focal length range are demonstrated. In analogy to a fixed-focus achromatic doublet lens, the multi-lens system is based on a stack of microfluidic cavities filled with optically optimized liquids with precisely defined refractive index and Abbe number, and these are independently pneumatically actuated. The membranes separating the cavities form the refractive optical surfaces, and the curvatures as a function of pressure are calculated using a mechanical model for deformation of flexible plates. The results are combined with optical ray tracing simulations of the multi-lens system to yield chromatic aberration behavior, which is verified experimentally. A focal length tuning range of 5 – 40 mm and reduction in chromatic aberration of over 30% is demonstrated, limited by the availability of optical fluids.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
    [CrossRef]
  2. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
    [CrossRef]
  3. F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
    [CrossRef]
  4. Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
    [CrossRef]
  5. A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
    [CrossRef]
  6. Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
    [CrossRef]
  7. X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
    [CrossRef] [PubMed]
  8. A. Werber and H. Zappe, “Tunable pneumatic micro-optics,” J. Microelectromech. Syst. 17, 1218–1227 (2008).
    [CrossRef]
  9. S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
    [CrossRef] [PubMed]
  10. D. Mader, A. Seifert, and H. Zappe, “Fabrication of aberration-corrected tunable micro-lenses,” in “Proc. of IEEE-LEOS Optical MEMS, Freiburg, Germany,”(2008), pp. 60–61.
  11. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
    [CrossRef]
  12. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
    [CrossRef]
  13. D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
    [CrossRef]
  14. S. P. Timosenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, 1996).
  15. S. Way, “Bending of circular plates with large deflections,” Trans. ASME 56, 627–636 (1934).
  16. M. Freeman and C. C. Hull, Optics, 11th ed. (Butterworth-Heinemann, 2003).

2010 (1)

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

2009 (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

2008 (3)

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

A. Werber and H. Zappe, “Tunable pneumatic micro-optics,” J. Microelectromech. Syst. 17, 1218–1227 (2008).
[CrossRef]

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

2007 (3)

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
[CrossRef] [PubMed]

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

2002 (1)

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

1934 (1)

S. Way, “Bending of circular plates with large deflections,” Trans. ASME 56, 627–636 (1934).

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Cheng, T. H.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Chin, L. K.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Choi, Y.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Draheim, J.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

Freeman, M.

M. Freeman and C. C. Hull, Optics, 11th ed. (Butterworth-Heinemann, 2003).

Friese, C.

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

Gonzalez-García, J.

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Granados-Augustín, F.-S.

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Huang, H. J.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Huang, T. J.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

Hull, C. C.

M. Freeman and C. C. Hull, Optics, 11th ed. (Butterworth-Heinemann, 2003).

Juluri, B. K.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

Kamberger, R.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

Kim, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Krogmann, F.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

Lee, S.-D.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Li, X. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Liebetraut, P.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

Liu, A. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Mader, D.

D. Mader, A. Seifert, and H. Zappe, “Fabrication of aberration-corrected tunable micro-lenses,” in “Proc. of IEEE-LEOS Optical MEMS, Freiburg, Germany,”(2008), pp. 60–61.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

Mao, X.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

Marhöfer, M.

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

Mönch, W.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

Park, J.-H.

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

Reichelt, S.

Rueda-Soriano, E.

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Santiago-Alvarado, A.

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Schneider, F.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

Seifert, A.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

D. Mader, A. Seifert, and H. Zappe, “Fabrication of aberration-corrected tunable micro-lenses,” in “Proc. of IEEE-LEOS Optical MEMS, Freiburg, Germany,”(2008), pp. 60–61.

Seow, Y. C.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Timosenko, S. P.

S. P. Timosenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, 1996).

Vázquez-Montiel, S.

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Waibel, P.

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

Waldeisen, J. R.

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

Wallrabe, U.

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

Way, S.

S. Way, “Bending of circular plates with large deflections,” Trans. ASME 56, 627–636 (1934).

Werber, A.

A. Werber and H. Zappe, “Tunable pneumatic micro-optics,” J. Microelectromech. Syst. 17, 1218–1227 (2008).
[CrossRef]

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

Woinowsky-Krieger, S.

S. P. Timosenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, 1996).

Zappe, H.

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

A. Werber and H. Zappe, “Tunable pneumatic micro-optics,” J. Microelectromech. Syst. 17, 1218–1227 (2008).
[CrossRef]

S. Reichelt and H. Zappe, “Design of spherically corrected, achromatic variable-focus liquid lenses,” Opt. Express 15, 14146–14154 (2007).
[CrossRef] [PubMed]

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

D. Mader, A. Seifert, and H. Zappe, “Fabrication of aberration-corrected tunable micro-lenses,” in “Proc. of IEEE-LEOS Optical MEMS, Freiburg, Germany,”(2008), pp. 60–61.

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

Zhou, X. Q.

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Y. C. Seow, A. Q. Liu, L. K. Chin, X. C. Li, H. J. Huang, T. H. Cheng, and X. Q. Zhou, “Different curvatures of tunable liquid microlens via the control of laminar flow rate,” Appl. Phys. Lett. 93, 084101 (2008).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3, 159–163 (2000).
[CrossRef]

IEEJ Trans. Electron. Electron. Eng. (1)

C. Friese, A. Werber, F. Krogmann, W. Mönch, and H. Zappe, “Materials, effects and components for tunable micro-optics,” IEEJ Trans. Electron. Electron. Eng. 2, 232–248 (2007).
[CrossRef]

J. Microelectromech. Syst. (2)

F. Krogmann, W. Mönch, and H. Zappe, “Electrowetting for tunable micro-optics,” J. Microelectromech. Syst. 17, 1501–1512 (2008).
[CrossRef]

A. Werber and H. Zappe, “Tunable pneumatic micro-optics,” J. Microelectromech. Syst. 17, 1218–1227 (2008).
[CrossRef]

Lab on a Chip (1)

X. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, “Hydrodynamically tunable optofluidic cylindrical microlens,” Lab on a Chip 7, 1303–1308 (2007).
[CrossRef] [PubMed]

Opt. Eng. (1)

A. Santiago-Alvarado, S. Vázquez-Montiel, F.-S. Granados-Augustín, J. Gonzalez-García, and E. Rueda-Soriano, “Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer,” Opt. Eng. 49, 123401 (2010).
[CrossRef]

Opt. Express (1)

Opt. Mater. (1)

Y. Choi, J.-H. Park, J.-H. Kim, and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Sens. Actuators A, Phys. (1)

F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, “Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS,” Sens. Actuators A, Phys. 151, 95–99 (2009).
[CrossRef]

Trans. ASME (1)

S. Way, “Bending of circular plates with large deflections,” Trans. ASME 56, 627–636 (1934).

Other (5)

M. Freeman and C. C. Hull, Optics, 11th ed. (Butterworth-Heinemann, 2003).

D. Mader, M. Marhöfer, P. Waibel, H. Zappe, and A. Seifert, “Tunable micro-fluidic multi-component microlens system with integrated actuator,” in “Proc. of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Hongkong,”(2010), pp. 799–802.
[CrossRef]

S. P. Timosenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (McGraw-Hill, 1996).

D. Mader, A. Seifert, and H. Zappe, “Fabrication of aberration-corrected tunable micro-lenses,” in “Proc. of IEEE-LEOS Optical MEMS, Freiburg, Germany,”(2008), pp. 60–61.

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Tunable all-silicone multi-chamber achromatic microlens,” in “Proc. of the IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS),”(2011), pp. 728–731.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic drawing of the microlens system. The curvature of the membranes can be varied by applying pressure individually to the chambers. (b) Exploded view of the system with integrated fluidic and alignment structures [11].

Fig. 2
Fig. 2

Calculated membrane profiles for membrane thickness 100 μm, membrane diameter 2 mm, Young’s modulus 1.76 MPa and Poisson ratio 0.5, for applied pressures in the range of 5 to 300 mbar.

Fig. 3
Fig. 3

Calculated (a) vertex curvatures c and (b) conic constants K as a function of the applied pressure, for membrane diameter 2 mm, Young’s modulus 1.76 MPa and Poisson ratio 0.5.

Fig. 4
Fig. 4

(a) Profilometric measurements of the membrane deformation of a 100 μm thick membrane with a diameter of 2 mm. (b) Fitted curvature c with respect to the applied pressure for different membrane thicknesses, each point corresponds to one profile in (a).

Fig. 5
Fig. 5

Ray tracing result for a combination of pressure differences Δp 1 and Δp 2 which yields a focal length of 12 mm at an object distance of 20 mm at λ 1 = 452nm.

Fig. 6
Fig. 6

Schematic of the setup for measuring chromatic aberration. A flat panel LED illuminates a razor blade and an intermediate image is formed with image relay optics close to the micro-lens system. The image is formed on the movable CCD camera and the position of highest contrast is evaluated by an autofocus algorithm.

Fig. 7
Fig. 7

Three images of the razor blade taken with the microlens system. The central image reflects the situation when the pressure differences in the chambers are optimized for a sharp image. The upper (lower) image shows the situation when the focal length of the system is too short (too long). The autofocus algorithm finds the sharpest image by calculating a quality factor from vertical cross-sectional lines of the image, as depicted in the right diagram.

Fig. 8
Fig. 8

Simulated (black dashed line) and measured (points) chromatic aberration with respect to the applied pressure in the lens chambers for two different focal lengths. The blue dotted line shows the combination of the pressure differences Δp 1 and Δp 2 which yield the fixed focal lengths: (a) 12 mm, (b) 15 mm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d 2 u d r 2 + 1 r d u d r u r 2 = 1 ν 2 r ( d w d r ) 2 d w d r d 2 w d r 2 d 3 w d r 3 + 1 r d 2 w d r 2 1 r 2 d w d r = 12 h 2 d w d r [ d u d r + ν u r + 1 2 ( d w d r ) 2 ] + 1 D r 0 r p r d r ,
w ( r ) = 8 h ( C 2 2 h 2 r 2 + C 4 4 h 4 r 4 + C 6 6 h 6 r 6 + ) ,
D = E h 3 12 ( 1 ν 2 ) .
w ( r ) = c r 2 1 1 ( 1 + K ) c 2 r 2 + k = 2 a k r 2 k ,
c = 8 C 2 h ; K = 4 C 4 C 2 3 1 ; a k = 2 C 2 k k h 2 k 1 .

Metrics