Abstract

A combination of an economic multi-band optical carrier generator and a novel optical signal to noise ratio (OSNR) enhancement circuit is proposed and demonstrated for radio over fiber (RoF) transport systems. Different from normal RoF transport systems which a central station (CS) needs multiple dedicate wavelength laser diodes (LDs) to support various base stations (BSs), the proposed scheme can employ a single LD to provide multiple optical carriers for various BSs. To verify this scheme, 8 coherent optical carriers are firstly generated using a single LD and a local oscillator (LO). Subsequently, their OSNR values are optimized by the developed OSNR enhancement circuit. An up to 15 dB OSNR enlargement in those optical carriers is experimentally achieved. To demonstrate the practice of the proposal, a pair of those optical carriers is employed to experimentally achieve frequency up-conversion process in a RoF transport system. Clear eye diagram and error free transmission reveal that with a proper carrier selector the proposed scheme can be employed to support multiple RoF transmissions. Furthermore, this proposal also presents a high possibility to achieve 60 GHz RoF transmission using a 10 GHz LO, a LD and a low frequency external modulator.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Palais, Fiber optical communications, 5th Ed., (Prentice Hall, 2005), 24-28.
  2. J. M. Senior, Optical fiber communications: principles and practice, 3rd Ed., (Prentice Hall, 2009), 7-10.
  3. H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
    [CrossRef]
  4. C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
    [CrossRef] [PubMed]
  5. Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
    [CrossRef]
  6. Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
    [CrossRef]
  7. J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
    [CrossRef]
  8. W. J. Ho, H. C. Peng, H. H. Lu, C. L. Ying, and C. Y. Li, “Novel ROF/FTTX/CATV hybrid three-band transport system,” Opt. Express 19(7), 6980–6989 (2011).
    [CrossRef] [PubMed]
  9. C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
    [CrossRef]
  10. W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems,” Opt. Express 18(25), 26077–26083 (2010).
    [CrossRef] [PubMed]
  11. C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
    [CrossRef]
  12. H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
    [CrossRef]
  13. H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
    [CrossRef]
  14. M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
    [CrossRef]
  15. D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE. OSA J. Lightw. Technol. 21(5), 1171–1178 (2003).
    [CrossRef]
  16. R. Hui and M. O’Sullivan, Fiber optic measurement techniques, Academic Press, 486–498 (2009).
  17. D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. (Frank) Chang, B. Charbonnier, F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization,” In Proc. Opt. Fiber Commun. (OFC), JThA 28 (2010).

2011 (1)

2010 (2)

W. S. Tsai, H. L. Ma, H. H. Lu, Y. P. Lin, H. Y. Chen, and S. C. Yan, “Bidirectional direct modulation CATV and phase remodulation radio-over-fiber transport systems,” Opt. Express 18(25), 26077–26083 (2010).
[CrossRef] [PubMed]

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

2009 (3)

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

C. H. Chang, H. H. Lu, H. S. Su, C. L. Shih, and K. J. Chen, “A broadband ASE light source-based full-duplex FTTX/ROF transport system,” Opt. Express 17(24), 22246–22253 (2009).
[CrossRef] [PubMed]

2008 (2)

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

2007 (1)

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

2006 (1)

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

2004 (1)

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

2003 (1)

D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE. OSA J. Lightw. Technol. 21(5), 1171–1178 (2003).
[CrossRef]

1982 (1)

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Buck, J. A.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chang, C. H.

Chang, G. K.

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

Chen, G. L.

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

Chen, H. Y.

Chen, J.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chen, K. J.

Chi, S.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chi, Y. C.

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

Chien, H. C.

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chiou, B. S.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Chowdhury, A.

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

Chuang, Y. W.

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

Guo, Y.

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

Ho, W. J.

Hsueh, Y. T.

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Jacobsen, G.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Jia, Z.

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Jiang, W. J.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

Kilper, D. C.

D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE. OSA J. Lightw. Technol. 21(5), 1171–1178 (2003).
[CrossRef]

Kumozaki, K.

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

Li, C. Y.

Liao, C. W.

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

Lin, C. T.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Lin, Y. P.

Long, J. L.

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

Lu, H. H.

Ma, H. L.

Miki, N.

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

Olesen, H.

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

Peng, C. F.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, H. C.

Peng, P. C.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Peng, W. R.

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

Shih, C. L.

Shih, P. T.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

Su, H. S.

Tsai, W. S.

Weingartner, W.

D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE. OSA J. Lightw. Technol. 21(5), 1171–1178 (2003).
[CrossRef]

Wong, E. Z.

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

Xu, G.

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

Yan, S. C.

Ying, C. L.

Yoshimoto, N.

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

Yoshino, M.

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

Yu, J.

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

Zhang, H.

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

Zheng, X.

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

Zhu, Z.

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

IEEE J. Lightw. Technol. (1)

H. C. Chien, Y. T. Hsueh, A. Chowdhury, J. Yu, and G. K. Chang, “Optical millimeter-wave generation and transmission without carrier suppression for single- and multi-band wireless over fiber applications,” IEEE J. Lightw. Technol. 28(16), 2230–2237 (2010).
[CrossRef]

IEEE J. Lightw. Technol. (2)

M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, “Multiwavelength optical source for OCDM using sinusoidally modulated laser diode,” IEEE J. Lightw. Technol. 27(20), 4524–4529 (2009).
[CrossRef]

J. Yu, G. K. Chang, A. Chowdhury, and J. L. Long, “Spectral efficient DWDM optical label/payload generation and transport for next-generation internet,” IEEE J. Lightw. Technol. 22(11), 2469–2482 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Olesen and G. Jacobsen, “A theoretical and experimental analysis of modulated laser fields and power spectra,” IEEE J. Quantum Electron. 18(12), 2069–2080 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, and S. Chi, “Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems,” IEEE Photon. Technol. Lett. 19(8), 610–612 (2007).
[CrossRef]

H. H. Lu, Y. W. Chuang, G. L. Chen, C. W. Liao, and Y. C. Chi, “Fiber-optical cable television system performance improvement employing light injection and optoelectronic feedback techniques,” IEEE Photon. Technol. Lett. 18(16), 1789–1791 (2006).
[CrossRef]

C. T. Lin, W. J. Jiang, J. Chen, P. T. Shih, P. C. Peng, E. Z. Wong, and S. Chi, “Novel optical vector signal generation with carrier suppression and frequency multiplication based on a single-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 20(24), 2060–2062 (2008).
[CrossRef]

Z. Zhu, X. Zheng, G. Xu, Y. Guo, and H. Zhang, “A super-tripling technology used in radio-over-fiber systems for multiservice wireless signals within a millimeter-wave band multi-band,” IEEE Photon. Technol. Lett. 21(20), 1520–1522 (2009).
[CrossRef]

Z. Jia, J. Yu, Y. T. Hsueh, A. Chowdhury, H. C. Chien, J. A. Buck, and G. K. Chang, “Multiband signal generation and dispersion-tolerant transmission based on photonic frequency tripling technology for 60-GHz radio-over-fiber systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

IEEE. OSA J. Lightw. Technol. (1)

D. C. Kilper and W. Weingartner, “Monitoring optical network performance degradation due to amplifier noise,” IEEE. OSA J. Lightw. Technol. 21(5), 1171–1178 (2003).
[CrossRef]

Opt. Express (3)

Other (4)

R. Hui and M. O’Sullivan, Fiber optic measurement techniques, Academic Press, 486–498 (2009).

D. Torrientes, P. Chanclou, F. Laurent, S. Tsyier, Y. (Frank) Chang, B. Charbonnier, F. Raharimanitra, “RSOA-based 10.3 Gbit/s WDM-PON with pre-amplification and electronic equalization,” In Proc. Opt. Fiber Commun. (OFC), JThA 28 (2010).

J. C. Palais, Fiber optical communications, 5th Ed., (Prentice Hall, 2005), 24-28.

J. M. Senior, Optical fiber communications: principles and practice, 3rd Ed., (Prentice Hall, 2009), 7-10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic diagram of the OSNR enhanced multi-band optical carrier generator.(b) The maximum OSNR of the obtained optical carriers in different input RF power levels.

Fig. 2
Fig. 2

The DFB output spectra when the inputted RF power level is (a)-1 dBm, (b)5 dBm, (c)11 dBm, and (d)17 dBm.

Fig. 3
Fig. 3

(a) The optical spectrum diagram.(b) The OSNR performance of the generated multi-band optical carrier with and without OSNR enhancement.

Fig. 4
Fig. 4

Experimental setup of our OSNR enhanced multi-band optical carrier generator for RoF transport systems.

Fig. 5
Fig. 5

The measured BER curve as a function of the received optical power level and the corresponding eye diagram and electrical spectrum diagram.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = 1 + M sin ( 2 π f m t ) exp { j β cos [ 2 π f m t + ϕ f ( I o , f m ) ] }
Q = 1 2 R 1 O S N R Δ v 0 B ,
B E R = 1 2 e r f c ( Q 2 ) ,

Metrics