Abstract

We demonstrate a simplified dual-comb LIDAR setup for precision absolute ranging that can achieve a ranging precision of 2 μm in 140 μs acquisition time. With averaging, the precision drops below 1 μm at 0.8 ms and below 200 nm at 20 ms. The system can measure the distance to multiple targets with negligible dead zones and a ranging ambiguity of 1 meter. The system is much simpler than a previous coherent dual-comb LIDAR because the two combs are replaced by free-running, saturable-absorber-based femtosecond Er fiber lasers, rather than tightly phase-locked combs, with the entire time base provided by a single 10-digit frequency counter. Despite the simpler design, the system provides a factor of three improved performance over the previous coherent dual comb LIDAR system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [CrossRef]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [CrossRef]
  3. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [CrossRef] [PubMed]
  4. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [CrossRef] [PubMed]
  5. Y. Salvadé, N. Schuhler, S. Lévêque, and S. Le Floch, “High-accuracy absolute distance measurement using frequency comb referenced multiwavelength source,” Appl. Opt. 47(14), 2715–2720 (2008).
    [CrossRef] [PubMed]
  6. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  7. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [CrossRef] [PubMed]
  8. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [CrossRef] [PubMed]
  9. P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  10. K. N. Joo, Y. Kim, and S. W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
    [CrossRef] [PubMed]
  11. S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
    [CrossRef] [PubMed]
  12. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [CrossRef]
  13. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  14. H. Y. Xia and C. X. Zhang, “Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
    [CrossRef] [PubMed]
  15. M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
    [CrossRef] [PubMed]
  16. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [CrossRef]
  17. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [CrossRef] [PubMed]
  18. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [CrossRef] [PubMed]
  19. P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [CrossRef] [PubMed]
  20. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [CrossRef]
  21. J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
    [CrossRef] [PubMed]
  22. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [CrossRef] [PubMed]
  23. G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt. 49(23), 4413–4419 (2010).
    [CrossRef] [PubMed]
  24. M. Jiang, G. Sucha, M. E. Fermann, J. Jimenez, D. Harter, M. Dagenais, S. Fox, and Y. Hu, “Nonlinearly limited saturable-absorber mode locking of an erbium fiber laser,” Opt. Lett. 24(15), 1074–1076 (1999).
    [CrossRef] [PubMed]
  25. M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
    [CrossRef]
  26. I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
    [CrossRef] [PubMed]
  27. J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
    [CrossRef] [PubMed]
  28. H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F. X. Kärtner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33(19), 2221–2223 (2008).
    [CrossRef] [PubMed]
  29. Batop sam-1550–6-x-2ps. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)
  30. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
    [CrossRef] [PubMed]
  31. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [CrossRef]
  32. The detector and digitizer used are a thorlabs PDB110C and a Gage CS14200. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)
  33. N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [CrossRef] [PubMed]
  34. P. E. Ciddor and R. J. Hill, “Refractive index of air. 2. Group index,” Appl. Opt. 38(9), 1663–1667 (1999).
    [CrossRef] [PubMed]

2011 (2)

2010 (10)

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[CrossRef]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

H. Y. Xia and C. X. Zhang, “Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
[CrossRef] [PubMed]

M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[CrossRef] [PubMed]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[CrossRef] [PubMed]

G. Taurand, P. Giaccari, J. D. Deschênes, and J. Genest, “Time-domain optical reflectometry measurements using a frequency comb interferometer,” Appl. Opt. 49(23), 4413–4419 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (5)

2007 (1)

2006 (3)

2005 (1)

2004 (1)

2002 (1)

M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
[CrossRef]

2000 (1)

1999 (2)

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Araki, T.

Balling, P.

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Bhattacharya, N.

Braat, J. J. M.

Byun, H.

Chen, J.

Ciddor, P. E.

Coddington, I.

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Cui, M.

Dagenais, M.

Dändliker, R.

Deschênes, J. D.

Diddams, S. A.

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Fejer, M. M.

Fermann, M. E.

Fox, S.

Genest, J.

Giaccari, P.

Giaccarri, P.

Godbout, M.

Gohle, C.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Guina, M.

M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
[CrossRef]

Hagihara, Y.

Hänsch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Harter, D.

Hartl, I.

Hill, R. J.

Holzwarth, R.

Hu, Y.

Imeshev, G.

Ippen, E. P.

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Jiang, M.

Jimenez, J.

Joo, K. N.

Kärtner, F. X.

Keilmann, F.

Kim, S. W.

Kim, Y.

Kim, Y. J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Kren, P.

Langrock, C.

Le Floch, S.

Lee, J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lévêque, S.

Masika, P.

Matsumoto, H.

McFerran, J. J.

Meiners-Hagen, K.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Minoshima, K.

Nenadovic, L.

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[CrossRef] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31(13), 1997–1999 (2006).
[CrossRef] [PubMed]

Okhotnikov, O. G.

M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
[CrossRef]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Pollinger, F.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Pudo, D.

Salvadé, Y.

Saucier, P.

Schlager, J. B.

Schuhler, N.

Sucha, G.

Swann, W. C.

Taurand, G.

Tremblay, P.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Urbach, H. P.

van den Berg, S. A.

Washburn, B. R.

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Xia, H. Y.

Xiang, N.

M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
[CrossRef]

Yasui, T.

Yokoyama, S.

Yokoyama, T.

Zeitouny, M. G.

Zhang, C. X.

Appl. Opt. (4)

Appl. Phys. B (1)

M. Guina, N. Xiang, and O. G. Okhotnikov, “Stretched-pulse fiber lasers based on semiconductor saturable absorbers,” Appl. Phys. B 74(9), S193–S200 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[CrossRef]

Nat. Photonics (4)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[CrossRef]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[CrossRef]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[CrossRef]

Opt. Express (12)

J. D. Deschênes, P. Giaccarri, and J. Genest, “Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry,” Opt. Express 18(22), 23358–23370 (2010).
[CrossRef] [PubMed]

I. Hartl, G. Imeshev, M. E. Fermann, C. Langrock, and M. M. Fejer, “Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology,” Opt. Express 13(17), 6490–6496 (2005).
[CrossRef] [PubMed]

J. J. McFerran, L. Nenadovic, W. C. Swann, J. B. Schlager, and N. R. Newbury, “A passively mode-locked fiber laser at 1.54 mum with a fundamental repetition frequency reaching 2 GHz,” Opt. Express 15(20), 13155–13166 (2007).
[CrossRef] [PubMed]

P. Giaccari, J. D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[CrossRef] [PubMed]

N. R. Newbury, I. Coddington, and W. C. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[CrossRef] [PubMed]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[CrossRef] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[CrossRef] [PubMed]

P. Balling, P. Kren, P. Masika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[CrossRef] [PubMed]

K. N. Joo, Y. Kim, and S. W. Kim, “Distance measurements by combined method based on a femtosecond pulse laser,” Opt. Express 16(24), 19799–19806 (2008).
[CrossRef] [PubMed]

S. Yokoyama, T. Yokoyama, Y. Hagihara, T. Araki, and T. Yasui, “A distance meter using a terahertz intermode beat in an optical frequency comb,” Opt. Express 17(20), 17324–17337 (2009).
[CrossRef] [PubMed]

H. Y. Xia and C. X. Zhang, “Ultrafast and Doppler-free femtosecondoptical ranging based on dispersivefrequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
[CrossRef] [PubMed]

M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express 18(15), 15981–15989 (2010).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. A (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[CrossRef] [PubMed]

Other (2)

The detector and digitizer used are a thorlabs PDB110C and a Gage CS14200. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)

Batop sam-1550–6-x-2ps. (The use of product names is necessary to specify the experimental results adequately and does not imply endorsement by the National Institute of Standards and Technology.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic principle of dual comb LIDAR. Pulses from the probe laser are reflected off a target and reference plane and heterodyned against LO pulses at a slightly different repetition rate, Δfr = fr -fr.LO , yielding the cross-correlation or interferogram, shown on the right for real data. This interferogram is repeated every 140 μs in real time corresponding to 1/Δfr . The interferogram can be interpreted as a down-sampled measurement of the probe pulse train, covering an effective time window of 4.8 ns, corresponding to the inverse of the 208 MHz repetition rate, and with effective time steps (visible in the insert) of Δfr /fr,LOfr = 160 fs, corresponding to the relative time advance between the LO and probe pulse train for each pulse. The temporal extent of the crosscorrelation in both real time (68 ns) and effective time (2.2 ps) is given to the right of the inset. These fine time steps allow for a precise measurement of the time duration between the reflection off the reference plane visible at zero time and the target plane visible at 1 ns (effective time) or ~35 μs (real time). The oscillations of the interferogram correspond to the difference between the effective carrier frequency of the probe and LO pulses (equal to the offset between probe and LO frequency comb teeth averaged across the spectra.)

Fig. 2
Fig. 2

(a) Linear cavity design for the 200 MHz fiber lasers. PBS-polarization beam splitter, Pol- polarization controller, ISO- isolator, WDM-wavelength division multiplexer. Output power was 2.0 mW from the PBS channel (out 1) and 0.4 mW through the gold reflector (out 2). (b) Spectra of the two lasers out of the out 1 port (port 2 is nearly identical). Spectral overlap could be improved in future designs but is not a significant limitation here.

Fig. 3
Fig. 3

Allan deviation of the free running Probe laser repetition rate measured with a 100 ms gate time (squares) and a 1 s gate time (triangles). The LO has slightly lower Allan deviation.

Fig. 4
Fig. 4

Schematic of the setup. The two combs operate at 207.694 MHz and 207.687 MHz repetition rates providing a 7 kHz measurement update rate. The probe comb is retro-reflected off a pc connector and a movable glass wedge to form the measurement path. The overlap between the two reflected probe pulses and LO pulses is digitized synchronously with the LO comb pulses and stored for analysis. The counted probe pulse repetition rate provides the scaling for the distance measurements. (The effective LO pulse repetition rate is derived from the digitized signal itself.) The lasers were housed in a box to protect them from air currents, but no temperature control or active feedback was used to otherwise stabilize their output.

Fig. 5
Fig. 5

(a) Measurement precision (Allan deviation) at a reference to the target range of 1 m. Precision at 140 μs is 2 μm averaging down as the square root of the averaging period and reaching 200 nm precision at 20 ms, indicated by the green arrow. (b) Long term stability test taken with a 20 ms averaging period and with the target positioned at 0.6 meters (black circles). Error bars are the standard deviation of the mean distance over the 20-ms period.

Fig. 6
Fig. 6

Measured time-of-flight versus the commercial interferometer (truth data) and measurement residuals. The averaging period for the time-of-flight measurement is 20 ms. Error bars are the standard deviation of the mean distance over the 20-ms period. The measured distance has an offset from zero because the commercial interferometer zero is defined as the end of the granite rod while the dual comb system measures an absolute distance from the end of the pc launch connector, which is set back 59.7 mm from the edge of the rail.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ d = ( Δ t r Δ r r ) T r
d = 1 2 ( v g τ d + n v g T r )

Metrics