Abstract

Operation of an end-pumped Yb3+: CaYAlO4 laser operating in the positive dispersion regime is experimentally investigated. The laser emitted strongly chirped pulses with extremely steep spectral edges, resembling the characteristics of dissipative solitons observed in fiber lasers. The results show that dissipative soliton emission constitutes another operating regime for mode locked Yb3+-doped solid state lasers, which can be explored for the generation of stable large energy femtosecond pulses.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–­-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
    [CrossRef]
  2. W. De Tan, D. Y. Tang, X. D. Xu, J. Zhang, C. W. Xu, F. Xu, L. H. Zheng, L. B. Su, and J. Xu, “Passive femtosecond mode-locking and cw laser performance of Yb3+: Sc2SiO5.,” Opt. Express 18(16), 16739–16744 (2010).
    [CrossRef] [PubMed]
  3. W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
    [CrossRef] [PubMed]
  4. Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
    [CrossRef] [PubMed]
  5. B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18(19), 1654–1656 (1993).
    [CrossRef] [PubMed]
  6. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with 4-MHz repetition-rate Kerr-lens mode-locked Ti: Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26(8), 560–562 (2001).
    [CrossRef] [PubMed]
  7. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29(12), 1366–1368 (2004).
    [CrossRef] [PubMed]
  8. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [CrossRef] [PubMed]
  9. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  10. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
    [CrossRef] [PubMed]
  11. J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
    [CrossRef]
  12. N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [CrossRef]
  13. V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
    [CrossRef]
  14. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
    [CrossRef]
  15. J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz, “Femtosecond passively mode-locked Ti:Al(2)O(3) laser with a nonlinear external cavity,” Opt. Lett. 14(20), 1125–1127 (1989).
    [CrossRef] [PubMed]
  16. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [CrossRef]
  17. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (1)

2009 (2)

2008 (3)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[CrossRef]

2006 (3)

2004 (1)

2001 (3)

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with 4-MHz repetition-rate Kerr-lens mode-locked Ti: Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26(8), 560–562 (2001).
[CrossRef] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

1998 (1)

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–­-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

1993 (1)

1989 (1)

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Apolonski, A.

Balembois, F.

Buckley, J.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Cho, S. H.

Chong, A.

Cunningham, J. E.

De Tan, W.

der Au, J. A.

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–­-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Didierjean, J.

Druon, F.

Fernandez, A.

Fuji, T.

Fujimoto, J. G.

Fürbach, A.

Georges, P.

Goldner, P.

Goodberlet, J.

Grelu, Ph.

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

Kärtner, F. X.

Keller, U.

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–­-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

Knox, W. H.

Krausz, F.

Li, D. Z.

Lucas Leclin, G.

Morgner, U.

Petit, J.

Poppe, A.

Proctor, B.

Renninger, W.

Renninger, W. H.

Schulz, P. A.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Su, L. B.

Tan, W. D.

Tang, D. Y.

Town, G.

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
[CrossRef] [PubMed]

Viana, B.

Wang, J.

Westwig, E.

Wise, F.

Wise, F. W.

Wu, J.

Wu, X.

Xu, C. W.

Xu, F.

Xu, J.

Xu, X. D.

Zaouter, Y.

Zhang, H.

Zhang, J.

Zhao, L. M.

Zheng, L. H.

IEEE J. Sel. Top. Quantum Electron. (1)

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–­-what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4(2), 159–168 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Interrelation between various branches of stable solitons in dissipative systems––conjecture for stability criterion,” Opt. Commun. 199(1-4), 283–293 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (7)

W. D. Tan, D. Y. Tang, X. D. Xu, D. Z. Li, J. Zhang, C. W. Xu, and J. Xu, “Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYAlO4 laser,” Opt. Lett. 36(2), 259–261 (2011).
[CrossRef] [PubMed]

Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, “47-fs diode-pumped Yb3+:CaGdAlO4 laser,” Opt. Lett. 31(1), 119–121 (2006).
[CrossRef] [PubMed]

B. Proctor, E. Westwig, and F. Wise, “Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion,” Opt. Lett. 18(19), 1654–1656 (1993).
[CrossRef] [PubMed]

S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with 4-MHz repetition-rate Kerr-lens mode-locked Ti: Al2O3 laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26(8), 560–562 (2001).
[CrossRef] [PubMed]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29(12), 1366–1368 (2004).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[CrossRef] [PubMed]

J. Goodberlet, J. Wang, J. G. Fujimoto, and P. A. Schulz, “Femtosecond passively mode-locked Ti:Al(2)O(3) laser with a nonlinear external cavity,” Opt. Lett. 14(20), 1125–1127 (1989).
[CrossRef] [PubMed]

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[CrossRef]

Phys. Rev. A (2)

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative solitons resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5 Pt 2), 056602 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. F1: Aspherical lens, f = 8 mm. F2: Plano-concave cylindrical lens, f = −25.4 mm. F3: Plano-convex cylindrical lens, f = 125 mm. F4: Plano-convex lens, f = 75 mm. M1, M2 and M3: Plano-concave mirrors, ROC = −100 mm, −300 mm and −100 mm, respectively. OC and SESAM: Flat Mirrors. L1 = 23.5 cm, L2 = 50 cm, L3 = 5.4 cm and L4 = 90 cm. OC: Output couplers with transmissions, T of 0.8% or 5%.

Fig. 2
Fig. 2

Output vs. absorbed power relations. Closed circles: T = 0.8%. Closed squares: T = 5%. The red, green and yellow lines represent the CW, Q-switched mode-locking, and CW mode-locking, respectively.

Fig. 3
Fig. 3

Optical spectra of the mode-locked pulses under different pump powers with (a) T = 0.8% and (b) T = 5%. The spectra were obtained under an absorbed pump power of between 5 W to 5.5 W.

Fig. 4
Fig. 4

Autocorrelation traces when T = 0.8%. a) Uncompressed trace and b) compressed trace. Closed circles are experimental data while the solid blue line is a sech2 fit.

Fig. 5
Fig. 5

Autocorrelation traces when T = 5%. a) Uncompressed trace and b) compressed trace. Closed circles are experimental data while the solid blue line is a sech2 fit.

Metrics