Abstract

We demonstrate a CW random distributed feedback Raman fiber laser operating in a 1.2 μm spectral band. The laser generates up to 3.8 W of the quasi-CW radiation at 1175 nm with the narrow spectrum of 1 nm. Conversion efficiency reaches 60%. Up to 1 W is generated at the second Stokes wavelength of 1242 nm. It is shown that the generation spectrum of RDFB Raman fiber laser is much narrower than the spectrum in the system without a weak random feedback.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
    [CrossRef]
  2. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
    [CrossRef]
  3. J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
    [CrossRef]
  4. D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
    [CrossRef]
  5. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
    [CrossRef] [PubMed]
  6. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
    [CrossRef] [PubMed]
  7. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
    [CrossRef] [PubMed]
  8. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
    [CrossRef]
  9. G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (Wiley-Interscience, 2002).
  10. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, “Supercontinuum self-Q-switched ytterbium fiber laser,” Opt. Lett. 22(5), 298–300 (1997).
    [CrossRef] [PubMed]
  11. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998).
    [CrossRef] [PubMed]
  12. C. Chen, H. K. Lee, and Y. Cheng, “Instability in Raman amplifiers caused by distributed Rayleigh reflection,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper TuC2.
  13. O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
    [CrossRef]
  14. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
    [CrossRef]
  15. A. K. Zamzuri, M. H. Al-Mansoori, N. M. Samsuri, and M. A. Mahdi, “Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser,” Appl. Opt. 49(18), 3506–3510 (2010).
    [CrossRef] [PubMed]
  16. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
    [CrossRef]
  17. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [CrossRef] [PubMed]
  18. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
    [CrossRef] [PubMed]
  19. A. Fotiadi, E. Preda, and P. Mégret, “Brillouin fiber laser with incoherent feedback,” in Proc. Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI6.
  20. A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
    [CrossRef]
  21. V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Zh. Eksp. Teor. Fiz.4 (10), 1442–1452 (1967) (in Russian). [Sov. Phys.-JETP 16, 835–840 (1968)].
    [CrossRef]
  22. N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
    [CrossRef] [PubMed]
  23. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
    [CrossRef] [PubMed]
  24. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
    [CrossRef]
  25. D. B. Soh, J. P. Koplow, S. W. Moore, K. L. Schroder, and W. L. Hsu, “The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers,” Opt. Express 18(21), 22393–22405 (2010).
    [CrossRef] [PubMed]
  26. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [CrossRef]
  27. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [CrossRef] [PubMed]
  28. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  29. P. A. Korotkov and G. S. Felinsky, “Raman gain of monochromatic light in single-mode silica fibers and the features of its emergence,” Ukr. J.Phys. 52, 335–345 (2007).
  30. R. H. Stolen, C. Lee, R. K. Jain, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1(4), 652–657 (1984).
    [CrossRef]
  31. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
    [CrossRef] [PubMed]
  32. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011).
    [CrossRef] [PubMed]
  33. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011).
    [CrossRef] [PubMed]

2011 (3)

2010 (8)

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

D. B. Soh, J. P. Koplow, S. W. Moore, K. L. Schroder, and W. L. Hsu, “The effect of dispersion on spectral broadening of incoherent continuous-wave light in optical fibers,” Opt. Express 18(21), 22393–22405 (2010).
[CrossRef] [PubMed]

A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

A. K. Zamzuri, M. H. Al-Mansoori, N. M. Samsuri, and M. A. Mahdi, “Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser,” Appl. Opt. 49(18), 3506–3510 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

2009 (5)

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009).
[CrossRef] [PubMed]

M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009).
[CrossRef] [PubMed]

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[CrossRef]

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

2008 (4)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

2007 (4)

P. A. Korotkov and G. S. Felinsky, “Raman gain of monochromatic light in single-mode silica fibers and the features of its emergence,” Ukr. J.Phys. 52, 335–345 (2007).

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[CrossRef]

N. B. Terry, T. G. Alley, and T. H. Russell, “An explanation of SRS beam cleanup in graded-index fibers and the absence of SRS beam cleanup in step-index fibers,” Opt. Express 15(26), 17509–17519 (2007).
[CrossRef] [PubMed]

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

2005 (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[CrossRef]

1998 (1)

1997 (1)

1984 (1)

1972 (1)

1967 (1)

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Zh. Eksp. Teor. Fiz.4 (10), 1442–1452 (1967) (in Russian). [Sov. Phys.-JETP 16, 835–840 (1968)].
[CrossRef]

Alcon-Camas, M.

Alley, T. G.

Al-Mansoori, M. H.

Ania-Castanon, J. D.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

Ania-Castañón, J. D.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Babin, S. A.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[CrossRef]

Baptista, J. M.

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Bednyakova, A. E.

Brito-Silva, A. M.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Cao, H.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[CrossRef]

Chaikina, E. I.

Chernikov, S. V.

Churkin, D. V.

Correia, C.

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Dalloz, N.

de Araújo, C. B.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

de Matos, C. J.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

de S Menezes, L.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Dietz, R.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

El-Taher, A. E.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

Fallert, J.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Fedoruk, M. P.

Felinsky, G. S.

P. A. Korotkov and G. S. Felinsky, “Raman gain of monochromatic light in single-mode silica fibers and the features of its emergence,” Ukr. J.Phys. 52, 335–345 (2007).

Fotiadi, A. A.

Frazão, O.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Gagné, M.

Gapontsev, V. P.

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Gomes, A. S.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Harper, P.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Hsu, W. L.

Ismagulov, A. E.

Jain, R. K.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[CrossRef]

Kalt, H.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Kashyap, R.

Kiyan, R. V.

Klingshirn, C.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Koplow, J. P.

Korotkov, P. A.

P. A. Korotkov and G. S. Felinsky, “Raman gain of monochromatic light in single-mode silica fibers and the features of its emergence,” Ukr. J.Phys. 52, 335–345 (2007).

Kurkov, A. S.

Latkin, A. I.

Lee, C.

Leskova, T. A.

Letokhov, V. S.

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Zh. Eksp. Teor. Fiz.4 (10), 1442–1452 (1967) (in Russian). [Sov. Phys.-JETP 16, 835–840 (1968)].
[CrossRef]

Lizárraga, N.

Lopez-Amo, M.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Mahdi, M. A.

Martinez Gámez, M. A.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Méndez, E. R.

Mezentsev, V. K.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Moore, S. W.

Pinto, A. M. R.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Podivilov, E. V.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
[CrossRef]

Puente, N. P.

Randoux, S.

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Russell, T. H.

Samsuri, N. M.

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Santos, J. S.

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Sartor, J.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Schneider, D.

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

Schroder, K. L.

Sholokhov, E.

Smirnov, S. V.

Smith, R. G.

Soh, D. B.

Stolen, R. H.

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Suret, P.

Taylor, J. R.

Terry, N. B.

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Turitsyn, S. K.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011).
[CrossRef] [PubMed]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011).
[CrossRef] [PubMed]

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Zamzuri, A. K.

Zhu, Y.

Appl. Opt. (2)

Appl. Phys. B (1)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. A (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A 38(49), 10497–10535 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

O. Frazão, C. Correia, J. S. Santos, and J. M. Baptista, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain–temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Nat. Photonics (4)

J. Fallert, R. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of stro ngly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009).
[CrossRef]

D. S. Wiersma, “Random lasers explained?” Nat. Photonics 3(5), 246–248 (2009).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010).
[CrossRef]

A. A. Fotiadi, “Random lasers: an incoherent fibre laser,” Nat. Photonics 4(4), 204–205 (2010).
[CrossRef]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. A (2)

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castanon, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Turbulent broadening of optical spectra in ultralong Raman fiber lasers,” Phys. Rev. A 77(3), 033803 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007).
[CrossRef] [PubMed]

Science (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[CrossRef] [PubMed]

Ukr. J.Phys. (1)

P. A. Korotkov and G. S. Felinsky, “Raman gain of monochromatic light in single-mode silica fibers and the features of its emergence,” Ukr. J.Phys. 52, 335–345 (2007).

Zh. Eksp. Teor. Fiz. (1)

V. S. Letokhov, “Light generation by a scattering medium with a negative resonant absorption,” Zh. Eksp. Teor. Fiz.4 (10), 1442–1452 (1967) (in Russian). [Sov. Phys.-JETP 16, 835–840 (1968)].
[CrossRef]

Other (3)

G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (Wiley-Interscience, 2002).

A. Fotiadi, E. Preda, and P. Mégret, “Brillouin fiber laser with incoherent feedback,” in Proc. Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CTuI6.

C. Chen, H. K. Lee, and Y. Cheng, “Instability in Raman amplifiers caused by distributed Rayleigh reflection,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper TuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Random distributed feedback Raman fiber laser output power from different side of the system: (a) pump laser side and (b) fiber side. Green squares – the first Stokes power in 1060-XP, red and blue squares – the first and second Stokes component in TrueWave correspondingly.

Fig. 3
Fig. 3

Random distributed feedback fiber laser spectra generated in 11 km long TrueWave fiber (red) and 2 km long 1060-XP fiber (green): (a) near the threshold and (b) well above the threshold.

Fig. 4
Fig. 4

The line width for 1060-XP peak (green squares), and for left (red triangles) peak in TrueWave.

Fig. 5
Fig. 5

Second Stokes wave spectrum observed in 10.7 km of TrueWave, at 7.5 W of pump power.

Fig. 6
Fig. 6

Spectra of Stokes wave observed in 10.7 km of TrueWave in forward (black line) and backward (red line) directions. Spectrum of ASE calculated for one-pass scheme (gray stars). The logarithmic scale is used. Pump power is equal to 4 W.

Tables (1)

Tables Icon

Table 1 Parameters of Fibers Under Study

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε 2 [ 0 L d x 0 L x d l exp ( 2 α s l + 2 g R x x + l P p ( v ) d v ) ] = 1.
{ [ d / d z + α S ] N S ( ν ) = g R ( ν ) P P ( z ) ( N S ( ν ) + 1 ) , [ d / d z + α P ] P p ( z ) = g R ( ν ) P P ( z ) ( N S ( ν ) + 1 ) d v h ν P .

Metrics