Abstract

Quadrature phase-shift keying (QPSK) is usually generated using an in-phase/quadrature (IQ) modulator in a balanced driving-condition, showing a square-shape constellation in complex plane. This conventional QPSK is referred to as square QPSK (S-QPSK) in this paper. On the other hand, when an IQ modulator is driven in an un-balanced manner with different amplitudes in in-phase (I) and quadrature (Q) branches, a rectangular QPSK (R-QPSK) could be synthesized. The concept of R-QPSK is proposed for the first time and applied to optical eight-ary phase-shift keying (8PSK) transmitter. By cascading an S-QPSK and an R-QPSK, an optical 8PSK could be synthesized. The transmitter configuration is based on two cascaded IQ modulators, which also could be used to generate other advanced multi-level formats like quadrature amplitude modulation (QAM) when different driving and bias conditions are applied. Therefore, the proposed transmitter structure has potential to be deployed as a versatile transmitter for synthesis of several different multi-level modulation formats for the future dynamic optical networks. A 30-Gb/s optical 8PSK is experimentally demonstrated using the proposed solution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Tsukamoto, K. Katoh, and K. Kikuchi, Coherent Demodulation of Optical 8-Phase Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThR5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OThR5
  2. M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator” in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper 8.3.6 (2007).
  3. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill, “8x114 Gb/s, 25-GHz-Spaced, PolMux-RZ-8PSK Transmission over 640 km of SSMF Employing Digital Coherent Detection and EDFA-Only Amplification,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP1. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-PDP1
  4. T. Sakamoto, A. Chiba, and T. Kawanishi, “Electro-Optic Synthesis of 8PSK by Quad-Parallel Mach-Zehnder Modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuG4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuG4
  5. Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H.Y. Tam, and P.K.A. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in Proc. European Conference on Optical Communication, paper P3.19 (2009).
  6. R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
    [CrossRef]
  7. N. Kikuchi, K. Sekine, and S. Sasaki, “Multilevel Signalling for High-Speed Optical Transmission,” in Proc. European Conference on Optical Communications (ECOC 2006), paper Tu3.2.1(2006).
  8. C. Kim and G. Li, “Direct-detection optical differential 8-level phase-shift keying (OD8PSK) for spectrally efficient transmission,” Opt. Express 12(15), 3415–3421 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3415 .
    [CrossRef] [PubMed]
  9. G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23062 .
    [CrossRef] [PubMed]
  10. I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
    [CrossRef]
  11. N. Kikuchi and S. Sasaki, “Sensitivity Improvement of Incoherent Multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) Signaling with Non-Euclidean Metric and MSPE (Multi Symbol Phase Estimation),” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWG1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OWG1

2010

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

G.-W. Lu, M. Sköld, P. Johannisson, J. Zhao, M. Sjödin, H. Sunnerud, M. Westlund, A. Ellis, and P. A. Andrekson, “40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals,” Opt. Express 18(22), 23062–23069 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23062 .
[CrossRef] [PubMed]

2004

2002

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Andrekson, P. A.

Becker, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Dreschmann, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Ellis, A.

Freude, W.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Grant, A.

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Greene, B.

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Hillerkuss, D.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Huebner, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Johannisson, P.

Kang, I.

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Kim, C.

Koos, C.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Leuthold, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Li, G.

Lu, G.-W.

Meyer, J.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Mollenauer, L.

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Nebendahl, B.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Schmogrow, R.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Sjödin, M.

Sköld, M.

Sunnerud, H.

Westlund, M.

Winter, M.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

Zhao, J.

IEEE Photon. Technol. Lett.

R. Schmogrow, D. Hillerkuss, M. Dreschmann, M. Huebner, M. Winter, J. Meyer, B. Nebendahl, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Real-Time Software-Defined Multi Format Transmitter Generating 64QAM at 28 GBd,” IEEE Photon. Technol. Lett. 22(21), 1601–1603 (2010).
[CrossRef]

I. Kang, L. Mollenauer, B. Greene, and A. Grant, “A novel method for synchronizing the pulse carver and electroabsorption data modulator for ultralong-haul DWDM transmission,” IEEE Photon. Technol. Lett. 14(9), 1357–1359 (2002).
[CrossRef]

Opt. Express

Other

N. Kikuchi and S. Sasaki, “Sensitivity Improvement of Incoherent Multilevel (30-Gbit/s 8QAM and 40-Gbit/s 16QAM) Signaling with Non-Euclidean Metric and MSPE (Multi Symbol Phase Estimation),” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWG1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OWG1

N. Kikuchi, K. Sekine, and S. Sasaki, “Multilevel Signalling for High-Speed Optical Transmission,” in Proc. European Conference on Optical Communications (ECOC 2006), paper Tu3.2.1(2006).

S. Tsukamoto, K. Katoh, and K. Kikuchi, Coherent Demodulation of Optical 8-Phase Shift-Keying Signals Using Homodyne Detection and Digital Signal Processing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OThR5. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2006-OThR5

M. Nakamura, Y. Kamio, and T. Miyazaki, “Pilot-carrier based linewidth-tolerant 8PSK self-homodyne using only one modulator” in Proc. European Conference on Optical Communication (ECOC2007), Berlin, Germany, paper 8.3.6 (2007).

X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, and P. Magill, “8x114 Gb/s, 25-GHz-Spaced, PolMux-RZ-8PSK Transmission over 640 km of SSMF Employing Digital Coherent Detection and EDFA-Only Amplification,” in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper PDP1. http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2008-PDP1

T. Sakamoto, A. Chiba, and T. Kawanishi, “Electro-Optic Synthesis of 8PSK by Quad-Parallel Mach-Zehnder Modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuG4. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2009-OTuG4

Y. Yang, L. Cheng, Z. Li, C. Lu, Q. Xiong, X. Xu, L. Liu, H.Y. Tam, and P.K.A. Wai, “An optical differential 8-PSK modulator using cascaded QPSK modulators,” in Proc. European Conference on Optical Communication, paper P3.19 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operation principle of the proposed 8PSK transmitter scheme using cascaded R-QPSK and S-QPSK.

Fig. 2
Fig. 2

Simulated constellation and phase transitions of (a) the proposed scheme (2-IQ); (b) the three-cascaded PM scheme (3-PM).

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

Recovered constellation of (a) R-QPSK, (b) S-QPSK, and (c) 8PSK at OSNR of around 27 dB (0.1nm).

Fig. 5
Fig. 5

(a) de-modulated eye diagram using direct detection, and (b) the eye diagram of generated 8PSK after transmitter (scale: 50ps/div).

Fig. 6
Fig. 6

Theoretical (solid line) and measured (symbol) BERs of 30-Gb/s 8PSK.

Fig. 7
Fig. 7

Optical spectrum of 30-Gb/s optical 8PSK.

Metrics