Abstract

We experimentally demonstrate an all-silica first-order fiber Bragg grating (FBG) for high temperature sensing by focused ion beam (FIB) machining in a fiber probe tapered to a point. This 61-period FBG is compact (~36.6 μm long and ~6.5 μm in diameter) with 200-nm-deep shallow grooves. We have tested the sensor from room temperature to around 500 °C and it shows a temperature sensitivity of nearly 20 pm/°C near the resonant wavelength of 1550 nm. This kind of sensor takes up little space because of its unique geometry and small size and may be integrated in devices that work in harsh environment or for detecting small objects.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
    [CrossRef]
  2. Y.-J. Rao, Y.-P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [CrossRef]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [CrossRef] [PubMed]
  4. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
    [CrossRef]
  5. C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
    [CrossRef]
  6. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
    [CrossRef]
  7. G. Brambilla, V. Pruneri, L. Reekie, C. Contardi, D. Milanese, and M. Ferraris, “Bragg gratings in ternary SiO2:SnO2:Na2O optical glass fibers,” Opt. Lett. 25(16), 1153–1155 (2000).
    [CrossRef] [PubMed]
  8. F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photon. Technol. Lett. 22(4), 218–220 (2010).
    [CrossRef]
  9. J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
    [CrossRef]
  10. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [CrossRef] [PubMed]
  11. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [CrossRef] [PubMed]
  12. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
    [CrossRef]
  13. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
    [CrossRef] [PubMed]
  14. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [CrossRef] [PubMed]
  15. F. Renna, D. Cox, and G. Brambilla, “Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers,” Opt. Express 17(9), 7658–7663 (2009).
    [CrossRef] [PubMed]
  16. W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
    [CrossRef]
  17. W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978).
    [CrossRef]
  18. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, “Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 ° C,” Opt. Lett. 35(4), 586–588 (2010).
    [CrossRef] [PubMed]
  19. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [CrossRef] [PubMed]
  20. S. Ju, P. R. Watekar, and W.-T. Han, “Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO2-SiO2 glass optical fiber,” J. Lightwave Technol. 28(18), 2697–2700 (2010).
    [CrossRef]
  21. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [CrossRef] [PubMed]

2011 (1)

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

2010 (8)

2009 (2)

2008 (1)

2005 (3)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[CrossRef]

2003 (1)

2001 (1)

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[CrossRef]

2000 (1)

1999 (1)

1978 (1)

W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978).
[CrossRef]

1975 (1)

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
[CrossRef]

Åslund, M. L.

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[CrossRef]

Bolger, J. A.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Brambilla, G.

Burnham, R.

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
[CrossRef]

Canning, J.

Choi, E. S.

Choi, H. Y.

Contardi, C.

Cook, K.

Cox, D.

Dong, B.

Eggleton, B. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Feng, J.

Ferraris, M.

Fu, L. B.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Gong, J.

Han, M.

Han, W.-T.

Hardy, A.

W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978).
[CrossRef]

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Hirao, K.

Huang, Z.-d.

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Jin, W.

Ju, S.

Kazansky, P. G.

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[CrossRef]

Kondo, Y.

Kou, J. L.

Kou, J.-l.

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

Lally, E.

Lee, B. H.

Lin, C. Y.

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[CrossRef]

Liu, S.

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Lu, Y. Q.

Lu, Y.-q.

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photon. Technol. Lett. 22(4), 218–220 (2010).
[CrossRef]

Magi, E. C.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Marshall, G. D.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[CrossRef]

Milanese, D.

Mitsuyu, T.

Nouchi, K.

Paek, U. C.

Park, K. S.

Park, S. J.

Pruneri, V.

Ran, Z. L.

Rao, Y.-J.

Reekie, L.

Renna, F.

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Scifres, D.

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
[CrossRef]

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

Steinvurzel, P.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Stevenson, M.

Streifer, W.

W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978).
[CrossRef]

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
[CrossRef]

Wang, A.

Wang, J.

Wang, L. A.

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[CrossRef]

Wang, Q. J.

Wang, Y. P.

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[CrossRef]

Wang, Y.-P.

Watanabe, M.

Watekar, P. R.

Withford, M. J.

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

Xu, F.

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photon. Technol. Lett. 22(4), 218–220 (2010).
[CrossRef]

J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, “Microfiber-probe-based ultrasmall interferometric sensor,” Opt. Lett. 35(13), 2308–2310 (2010).
[CrossRef] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[CrossRef] [PubMed]

Xuan, H.

Ye, L.

Zhang, M.

Zhu, G.

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

Zhu, T.

Appl. Phys. B (1)

J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B 102(3), 615–619 (2011).
[CrossRef]

Electron. Lett. (2)

L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, “Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres,” Electron. Lett. 41(11), 638–640 (2005).
[CrossRef]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41(4), 176–178 (2005).
[CrossRef]

IEEE J. Quantum Electron. (2)

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” IEEE J. Quantum Electron. 11(11), 867–873 (1975).
[CrossRef]

W. Streifer and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” IEEE J. Quantum Electron. 14(12), 935–943 (1978).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Y. Lin and L. A. Wang, “A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating,” IEEE Photon. Technol. Lett. 13(4), 332–334 (2001).
[CrossRef]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “High-temperature sensing using surface relief fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(9), 1926–1928 (2005).
[CrossRef]

F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, “A microfiber Bragg grating based on a microstructured rod: a proposal,” IEEE Photon. Technol. Lett. 22(4), 218–220 (2010).
[CrossRef]

J. Appl. Phys. (1)

Y. P. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys. 108(8), 081101 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (7)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) FIB picture of the TFPG with 61 periods (~36.6 μm in length and Λ = 600 nm). (b) Magnified picture of the grating.

Fig. 2
Fig. 2

The cross-sections of (a) an un-etched fiber, (b) an etched fiber and (c) an equivalent unperturbed geometry, respectively. hg is the groove height and heff is effective height.

Fig. 3
Fig. 3

Reflection spectra of the TFPG in air at different temperatures.

Fig. 4
Fig. 4

Dependence of the measured wavelength shift on temperature. The asterisk represents the measured results while the solid line is the linear fitting result.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ ( 1 τ ) ( θ g sin θ g cos θ g ) = θ e f f sin θ e f f cos θ e f f θ g = arccos { ( r h g ) / r } θ e f f = arccos { ( r h e f f ) / r }
S T = d λ r d T = 2 ( σ T Λ n e f f n s i l i c a + r Λ α T n e f f r + Λ α T n e f f )

Metrics