Abstract

We propose an efficient direct k-domain interpolation based on spectral phase in swept-source optical coherence tomography (SS-OCT). Both the calibration signal from the Mach-Zehnder interferometer (MZI) and the OCT imaging signal from the Michelson interferometer sharing the same swept source are detected and digitized simultaneously. Sufficient sampling of the OCT imaging signal with uniform k interval are directly interpolated in the k-domain based on the spectral phase derived from MZI calibration signal. Depth profile is then obtained from Fourier transform of the k-domain interpolated data. In vivo imaging of human finger skin and nail fold are conducted. Reconstructed images corresponding to different calibration methods are evaluated for comparison. Experimental results demonstrate that improved imaging quality with enhanced resolution and signal-to-noise ratio is realized by the proposed method in contrast to the spectral phase based time-domain interpolation method as well as the intensity based calibration method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  2. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  3. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  5. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  6. V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
    [CrossRef]
  7. C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
    [CrossRef] [PubMed]
  8. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  9. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
    [CrossRef] [PubMed]
  10. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
    [CrossRef] [PubMed]
  11. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  12. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [CrossRef] [PubMed]
  13. J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
    [CrossRef] [PubMed]
  14. T. Wu, Z. H. Ding, K. Wang, and C. Wang, “Swept source optical coherence tomography based on non-uniform discrete Fourier transform,” Chin. Opt. Lett. 7(10), 941–944 (2009).
    [CrossRef]
  15. D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R, 73720R-6 (2009).
    [CrossRef]
  16. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009).
    [CrossRef] [PubMed]
  17. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
    [CrossRef] [PubMed]
  18. C. Dorrer, N. Belabas, J.-P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [CrossRef]
  19. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
    [CrossRef] [PubMed]
  20. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (5)

2008 (1)

2005 (5)

2003 (4)

2000 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Akiba, M.

Belabas, N.

Biedermann, B. R.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Cense, B.

Chan, K.-P.

Chen, Z.

Chinn, S. R.

Choma, M.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Chong, C.

de Boer, J.

de Boer, J. F.

Ding, Z.

Ding, Z. H.

Dorrer, C.

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fujimoto, J.

Fujimoto, J. G.

Gelikonov, G.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Gelikonov, V.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Gora, M.

Hillmann, D.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R, 73720R-6 (2009).
[CrossRef]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Hsu, K.

Huber, R.

Huo, L.

Huttmann, G.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R, 73720R-6 (2009).
[CrossRef]

Iftimia, N.

Itoh, M.

Izatt, J.

Izatt, J. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

Jiang, J. Y.

Joffre, M.

Kaluzny, B. J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Karnowski, K.

Koch, P.

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R, 73720R-6 (2009).
[CrossRef]

Kowalczyk, A.

Lamouche, G.

Leitgeb, R.

Lévesque, D.

Li, J.

Li, X.

Likforman, J.-P.

Madjarova, V. D.

Makita, S.

Morosawa, A.

Nelson, J. S.

Palte, G.

Park, B. H.

Pierce, M. C.

Sakai, T.

Sarunic, M.

Shi, G.

Shilyagin, P.

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Swanson, E. A.

Szkulmowski, M.

Taira, K.

Tearney, G.

Tearney, G. J.

Vergnole, S.

Wang, C.

Wang, K.

Wei, L.

Wojtkowski, M.

Wu, T.

Xi, J.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Zhang, J.

Zhang, Y.

Chin. Opt. Lett. (1)

J. Biomed. Opt. (1)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (10)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

J. Xi, L. Huo, J. Li, and X. Li, “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Express 18(9), 9511–9517 (2010).
[CrossRef] [PubMed]

S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express 18(10), 10446–10461 (2010).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005).
[CrossRef] [PubMed]

C. M. Eigenwillig, B. R. Biedermann, G. Palte, and R. Huber, “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Express 16(12), 8916–8937 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Spectrosc. (1)

V. Gelikonov, G. Gelikonov, and P. Shilyagin, “Linear-wavenumber spectrometer for high-speed spectral-domain optical coherence tomography,” Opt. Spectrosc. 106(3), 459–465 (2009).
[CrossRef]

Proc. SPIE (1)

D. Hillmann, G. Huttmann, and P. Koch, “Using nonequispaced fast Fourier transformation to process optical coherence tomography signals,” Proc. SPIE 7372, 73720R, 73720R-6 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Polynomial fitted k versus time (line in red) based on non-linear-in-k calibration MZI signal. linear-in-k positions (dot in red) and non-linear-in-k positions (circle dot in blue) in k-domain. Only a small number of acquired data are shown for clarity of observation.

Fig. 2
Fig. 2

Schematic of the constructed SS-OCT system. FC: fiber coupler; CIR: circulator; VDL: variable delay line; MZI: Mach-Zehnder interferometer; BPD: balanced photodiodes; CL: fiber collimator; RM: reference mirror; GM: galvanometer mirror; OBJ: objective lens; SMP: sample; CH0: channel 0; CH1: channel 1; TRG: trigger channel.

Fig. 3
Fig. 3

(a) Spectral phase unwrapped with jump threshold of π (red) and 1.5 π (blue), (b) spectral phase reconstructed from MZI calibration signal with (blue) and without (red) noise.

Fig. 4
Fig. 4

A-scans reconstructed by spectral phase based KDSI method (red) and TDSI method (blue) with 6-order polynomial fitting (a, b) and 16-order polynomial fitting (c, d), respectively.

Fig. 5
Fig. 5

Comparison of axial resolution reconstructed by different calibration algorithms.

Fig. 6
Fig. 6

Reconstructed PSFs corresponding to imaging depth of 2.13 mm (a, b) and PSFs versus four depths (c). *: Aliasing artifact; KDSI: spectral phase based k-domain spline interpolation method; IBC.: intensity based calibration method; non.: reconstruction without calibration.

Fig. 7
Fig. 7

Reconstructed OCT Images of finger skin located closer to the zero OPD position and nail fold far away from the zero OPD position provided by three reconstruction methods. (a) and (d) are reconstructed by intensity based calibration method, (b) and (e) are reconstructed by spectral phase based time-domain spline interpolation method with 6-order polynomial fitting, (c) and (f) are reconstructed by spectral phase based k-domain spline interpolation method. ZPD: zero optical path difference; E: epidermis; D: dermis; SD: sweat duct; C: cuticle; NP: nail plate; NB: nail bed; NR: nail root; NM: nail matrix.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I M Z I [ t i ] = 2 S ( t i ) R cos ( k [ t i ] d ) i = 1 , , N ,
I ˜ M Z I [ t i ] = 2 S ( t i ) R exp ( j φ [ t i ] ) i = 1 , , N .
k [ t i ] = φ [ t i ] d i = 1 , , N
t = a + b k + c k 2 + d k 3 + e k 4 +
k [ j ] = ( j 1 ) φ [ t N ] ( M 1 ) d = ( j 1 ) k [ t N ] M 1 j = 1 , , M

Metrics