Abstract

We demonstrate a novel microwave photonic filter based on a non-coherent broadband optical source and the variable optical carrier time shift (VOCTS) method. Optical slicing which is essential conventionally is not employed in our scheme. Nevertheless, equivalent “electrical slicing” is performed by VOCTS, generating a passband free from the carrier-suppression effect. The baseband response is eliminated by using carrier-suppression or phase modulation. Single bandpass is also achieved due to the continuous-time sinusoidal impulse response. Detailed theoretical analyses are presented and agree with the experiments quite well.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  2. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  3. K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
    [CrossRef]
  4. D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
    [CrossRef]
  5. B. Vidal, J. L. Corral, V. Polo, and J. Martí, “Photonic WDM microwave filter with negative taps,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF84.
  6. J. Li, K. K. Y. Cheung, and K. K. Y. Wong, "Photonic microwave filter with negative coefficients using fiber optical parametric amplifier," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA53.
  7. Y. Yan, S. R. Blais, and J. Yao, “Tunable photonic microwave bandpass filter with negative coefficients implemented using an optical phase modulator and chirped fiber Bragg gratings,” J. Lightwave Technol. 25(11), 3283–3288 (2007).
    [CrossRef]
  8. N. You and R. A. Minasian, “A novel high-Q optical microwave processor using hybrid delay-line filters,” IEEE Trans. Microw. Theory Tech. 47(7), 1304–1308 (1999).
    [CrossRef]
  9. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach–Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [CrossRef]
  10. H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
    [CrossRef]
  11. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008).
    [CrossRef]
  12. T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
    [CrossRef] [PubMed]
  13. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express 19(5), 4566–4576 (2011).
    [CrossRef] [PubMed]
  14. J. Mora, A. Ortigosa-Blanch, D. Pastor, and J. Capmany, “Tunable microwave photonic filter free from baseband and carrier suppression effect not requiring single sideband modulation using a Mach-Zenhder configuration,” Opt. Express 14(17), 7960–7965 (2006).
    [CrossRef] [PubMed]
  15. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [CrossRef]
  16. E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at International Meeting on Microwave Photonics, Montreal, Quebec, Canada, Oct. 5–9, 2010.
  17. G.-H. Duan and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
    [CrossRef]
  18. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Noise reduction by balanced detection in microwave photonic filters based on optical broadband sources,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThY3.

2011

2010

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

2008

2007

2006

2004

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
[CrossRef]

2001

G.-H. Duan and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[CrossRef]

1999

N. You and R. A. Minasian, “A novel high-Q optical microwave processor using hybrid delay-line filters,” IEEE Trans. Microw. Theory Tech. 47(7), 1304–1308 (1999).
[CrossRef]

1985

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Andrés, M. V.

Blais, S. R.

Bolea, M.

Capmany, J.

Chang, Y. M.

Cruz, J. L.

Cutler, C.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Díez, A.

Duan, G.-H.

G.-H. Duan and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[CrossRef]

Fu, H.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

Georgiev, E.

G.-H. Duan and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[CrossRef]

Goodman, J.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

He, S.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

Huang, T. X. H.

Jackson, K.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

Lee, J. H.

Martinez, A.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
[CrossRef]

Minasian, R. A.

T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
[CrossRef] [PubMed]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

N. You and R. A. Minasian, “A novel high-Q optical microwave processor using hybrid delay-line filters,” IEEE Trans. Microw. Theory Tech. 47(7), 1304–1308 (1999).
[CrossRef]

Mora, J.

Moslehi, B.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Newton, S.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Ortega, B.

Ortigosa-Blanch, A.

Ou, H.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

Pastor, D.

Pierno, L.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
[CrossRef]

Shaw, H. J.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Tur, M.

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

Varasi, M.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
[CrossRef]

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

Yan, Y.

Yao, J.

Yi, X.

You, N.

N. You and R. A. Minasian, “A novel high-Q optical microwave processor using hybrid delay-line filters,” IEEE Trans. Microw. Theory Tech. 47(7), 1304–1308 (1999).
[CrossRef]

Zhu, K.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

IEEE J. Quantum Electron.

G.-H. Duan and E. Georgiev, “Non-white photodetection noise at the output of an optical amplifier: theory and experiment,” IEEE J. Quantum Electron. 37(8), 1008–1014 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, “Reconfigurable RF-photonic filter with negative coefficients and flat top resonances using phase inversion in a newly designed 2x1 integrated Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 16(9), 2126–2128 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, and H. J. Shaw, “Optical fiber delay-line signal processing,” IEEE Trans. Microw. Theory Tech. 33(3), 193–210 (1985).
[CrossRef]

N. You and R. A. Minasian, “A novel high-Q optical microwave processor using hybrid delay-line filters,” IEEE Trans. Microw. Theory Tech. 47(7), 1304–1308 (1999).
[CrossRef]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Laser Technol.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[CrossRef]

Other

B. Vidal, J. L. Corral, V. Polo, and J. Martí, “Photonic WDM microwave filter with negative taps,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2004), paper MF84.

J. Li, K. K. Y. Cheung, and K. K. Y. Wong, "Photonic microwave filter with negative coefficients using fiber optical parametric amplifier," in National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWA53.

E. Hamidi, R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Tunable radio frequency photonic filter based on intensity modulation of optical combs,” presented at International Meeting on Microwave Photonics, Montreal, Quebec, Canada, Oct. 5–9, 2010.

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Noise reduction by balanced detection in microwave photonic filters based on optical broadband sources,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThY3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Set up of the widely tunable single-bandpass microwave photonic filter. FBG: fiber Bragg grating; BOS: broadband optical source; PC: polarization controller; EOM: electro-optic modulator; VDL: variable delay line; DCF: dispersion-compensating fiber.

Fig. 2
Fig. 2

Illustration of the variable optical carrier time shift method. Green arrows: sideband components from branch 1; Red arrows: time-shifted carrier components form branch 2; IM: intensity modulation; PM: phase modulation.

Fig. 3
Fig. 3

Tunable filter response when Mache-Zehnder intensity modulator is used. (a.1), (a.2) Traditional configuration; (b.1), (b.2), (c.1), (c.2) our configuration with the modulator biased at quadrature point and carrier-suppression point, respectively. (a.1), (b.1), (c.1) Experiment, (a.2), (b.2), (c.2) theory.

Fig. 4
Fig. 4

Tunable filter response when phase modulator is used. (a.1), (a.2) Traditional configuration; (b.1), (b.2) our configuration. (a.1), (b.1) Experiment, (a.2), (b.2) theory.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e ( t ) = 1 2 π 0 + E ( Ω ) exp ( j Ω t ) d Ω ,
E ( Ω ) E * ( Ω ' ) = 2 π N ( Ω ) δ ( Ω Ω ' ) ,
O 1 ( Ω ) = c 1 E ( Ω ) exp ( j φ ) + m E ( Ω ω e ) + m E ( Ω + ω e ) ,
O 2 ( Ω ) = c 2 E ( Ω ) exp ( j Ω Δ τ ) .
I ( ω ) = 1 2 π 0 + O 3 ( Ω ) O 3 * ( Ω ω ) d Ω = 2 m [ δ ( ω ω e ) + δ ( ω + ω e ) ] { c 1 0 + N ( Ω ) cos ( φ + β 2 ω 2 / 2 ) exp [ j ω β 2 ( Ω Ω 0 ) ] d Ω + c 2 0 + N ( Ω ) cos ( Ω Δ τ β 2 ω 2 / 2 ) exp [ j ω β 2 ( Ω Ω 0 ) ] d Ω } ,
H ( ω ) = 4 c 1 m cos ( φ + β 2 ω 2 / 2 ) × H b ( ω ) + 2 c 2 m × exp [ j ( Ω 0 Δ τ β 2 ω 2 / 2 ) ] × H b ( ω Δ τ / β 2 ) + 2 c 2 m × exp [ j ( Ω 0 Δ τ + β 2 ω 2 / 2 ) ] × H b ( ω + Δ τ / β 2 ) ,
H b ( ω ) = 1 2 π 0 + N ( Ω ) exp [ j ω β 2 ( Ω Ω 0 ) ]  d Ω .

Metrics