Abstract

We show that in high-index-contrast nanoscale waveguides counter propagating waves can posses distinct spatial near-field profiles. Using transmission-based near-field scanning optical microscopy (TraNSOM), we identify and map the unique near-field intensity distributions of these counter-propagating modes in a single-mode silicon waveguide. Based on this phenomenon, we design and simulate an integrated device 45 µm in length that selectively attenuates reflected light with an insertion loss of −3.6 dB and an extinction of greater than −20 dB.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Cho, P. K`apur, and K. C. Saraswat, “Power Comparison Between High-Speed Electrical and Optical Interconnects for Interchip Communication,” J. Lightwave Technol. 22(9), 2021–2033 (2004).
    [CrossRef]
  2. M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  3. R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
    [CrossRef]
  4. T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
    [CrossRef]
  5. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  7. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  9. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  10. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
    [CrossRef]
  11. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  12. R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4341 .
    [CrossRef] [PubMed]
  13. M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-5-1515 .
    [CrossRef] [PubMed]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991)
  15. R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective (Morgan Kaufmann, 2002)
  16. R. B. Dyott, Elliptical Fiber Waveguides (Artech House Publishers, 1995)
  17. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [CrossRef]
  18. S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11267 .
    [CrossRef] [PubMed]
  19. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [CrossRef]
  20. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14(19), 8745–8752 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-19-8745 .
    [CrossRef] [PubMed]
  21. J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-22-10588 .
    [CrossRef] [PubMed]
  22. M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32(17), 2602–2604 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-17-2602 .
    [CrossRef] [PubMed]
  23. B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
    [CrossRef] [PubMed]
  24. L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
    [CrossRef]
  25. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1643 .
    [CrossRef] [PubMed]
  26. I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13(14), 5553–5564 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5553 .
    [CrossRef] [PubMed]
  27. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
    [CrossRef] [PubMed]
  28. J. T. Robinson and M. Lipson, “Far-field control of radiation from an individual optical nanocavity: analogue to an optical dipole,” Phys. Rev. Lett. 100(4), 043902–043904 (2008).
    [CrossRef] [PubMed]
  29. D. Marcuse, Theory of dielectric optical waveguides (Academic Press, Inc., 1974). pp. 102–103; 4–5
  30. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302 .
    [CrossRef] [PubMed]
  31. C. Pollock and M. Lipson, Integrated Photonics (Springer, 2003)
  32. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-8-1622 .
    [CrossRef] [PubMed]
  33. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  34. H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006).
    [CrossRef]
  35. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
    [CrossRef]

2009 (1)

2008 (5)

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
[CrossRef]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

J. T. Robinson and M. Lipson, “Far-field control of radiation from an individual optical nanocavity: analogue to an optical dipole,” Phys. Rev. Lett. 100(4), 043902–043904 (2008).
[CrossRef] [PubMed]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

2007 (4)

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32(17), 2602–2604 (2007), http://ol.osa.org/abstract.cfm?URI=ol-32-17-2602 .
[CrossRef] [PubMed]

2006 (6)

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1643 .
[CrossRef] [PubMed]

H. Shimizu and Y. Nakano, “Fabrication and Characterization of an InGaAsp/InP Active Waveguide Optical Isolator With 14.7 dB/mm TE Mode Nonreciprocal Attenuation,” J. Lightwave Technol. 24(1), 38–43 (2006).
[CrossRef]

W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14(19), 8745–8752 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-19-8745 .
[CrossRef] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-22-10588 .
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[CrossRef]

2005 (6)

2004 (4)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-8-1622 .
[CrossRef] [PubMed]

H. Cho, P. K`apur, and K. C. Saraswat, “Power Comparison Between High-Speed Electrical and Optical Interconnects for Interchip Communication,” J. Lightwave Technol. 22(9), 2021–2033 (2004).
[CrossRef]

2003 (1)

2001 (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Abashin, M.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302 .
[CrossRef] [PubMed]

Aubert, S.

Bachelot, R.

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Blaize, S.

Bogaerts, W.

Borselli, M.

Bruyant, A.

Byun, H.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Charvolin, T.

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Cho, H.

Cluzel, B.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Cluzell, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Dadap, J.

Dai, D.

de Fornel, F.

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

de Ridder, R. M.

Espinola, R.

Fainman, Y.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gan, F.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Geis, M.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Gersen, H.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Grein, M.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Hadji, E.

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Herzig, H.

Hollink, A. J. F.

Holzwarth, C. W.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Hopman, W. C. L.

Hoyt, J. L.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

Ikeda, K.

Ippen, E. P.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Johnson, T.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

K`apur, P.

Kärtner, F. X.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Kim, S.-H.

Korterik, J. P.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Kuipers, L.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Lalanne, P.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

Lalouat, L.

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Lerondel, G.

Levy, U.

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

J. T. Robinson and M. Lipson, “Far-field control of radiation from an individual optical nanocavity: analogue to an optical dipole,” Phys. Rev. Lett. 100(4), 043902–043904 (2008).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-22-10588 .
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on Silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302 .
[CrossRef] [PubMed]

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lyszczarz, T.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Märki, I.

McNab, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Mizumoto, T.

S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11267 .
[CrossRef] [PubMed]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

Nakagawa, W.

Nakano, Y.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Olubuyide, O. O.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Orcutt, J. S.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Osgood, R.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-15-1302 .
[CrossRef] [PubMed]

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Peyrade, D.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

Picard, E.

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Popovic, M. A.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

Rakich, P. T.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Ram, R. J.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Robinson, J. T.

Rodier, J.-C.

Royer, P.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Saraswat, K. C.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shimizu, H.

Shoji, Y.

S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11267 .
[CrossRef] [PubMed]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

Smith, H. I.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[CrossRef]

Soref, R.

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[CrossRef]

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Spector, S.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Stefanon, I.

Stojanovic, V.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Subramaniam, V.

Takei, R.

Tortora, P.

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Vaccaro, L.

van der Werf, K. O.

van Hulst, N. F.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Velha, P.

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

Vlasov, Y.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Wang, Z.

Watts, M. R.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

Yoon, J. U.

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

L. Lalouat, B. Cluzel, F. de Fornel, P. Velha, P. Lalanne, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Subwavelength imaging of light confinement in high-Q/small-V photonic crystal nanocavity,” Appl. Phys. Lett. 92(11), 111111 (2008).
[CrossRef]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117–071117 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quant. 12(6), 1678–1687 (2006).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Net. (1)

T. Barwicz, H. Byun, F. Gan, C. W. Holzwarth, M. A. Popovic, P. T. Rakich, M. R. Watts, E. P. Ippen, F. X. Kärtner, H. I. Smith, J. S. Orcutt, R. J. Ram, V. Stojanovic, O. O. Olubuyide, J. L. Hoyt, S. Spector, M. Geis, M. Grein, T. Lyszczarz, and J. U. Yoon, “Silicon photonics for compact, energy-efficient interconnects,” J. Opt. Net. 6(1), 63–73 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature (5)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (9)

R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-11-4341 .
[CrossRef] [PubMed]

M. Borselli, T. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-5-1515 .
[CrossRef] [PubMed]

W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14(19), 8745–8752 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-19-8745 .
[CrossRef] [PubMed]

J. T. Robinson, S. F. Preble, and M. Lipson, “Imaging highly confined modes in sub-micron scale silicon waveguides using Transmission-based Near-field Scanning Optical Microscopy,” Opt. Express 14(22), 10588–10595 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-22-10588 .
[CrossRef] [PubMed]

S.-H. Kim, R. Takei, Y. Shoji, and T. Mizumoto, “Single-trench waveguide TE-TM mode converter,” Opt. Express 17(14), 11267–11273 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-14-11267 .
[CrossRef] [PubMed]

M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig, and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14(4), 1643–1657 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-4-1643 .
[CrossRef] [PubMed]

I. Stefanon, S. Blaize, A. Bruyant, S. Aubert, G. Lerondel, R. Bachelot, and P. Royer, “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13(14), 5553–5564 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5553 .
[CrossRef] [PubMed]

B. Cluzell, L. Lalouat, P. Velha, E. Picard, D. Peyrade, J.-C. Rodier, T. Charvolin, P. Lalanne, F. de Fornel, and E. Hadji, “A near-field actuated optical nanocavity,” Opt. Express 16(1), 279–286 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-1-279 .
[CrossRef] [PubMed]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004), http://www.opticsexpress.org/abstract.cfm?URI=oe-12-8-1622 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. T. Robinson and M. Lipson, “Far-field control of radiation from an individual optical nanocavity: analogue to an optical dipole,” Phys. Rev. Lett. 100(4), 043902–043904 (2008).
[CrossRef] [PubMed]

Science (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Tracking femtosecond laser pulses in space and time,” Science 294(5544), 1080–1082 (2001).
[CrossRef] [PubMed]

Other (5)

D. Marcuse, Theory of dielectric optical waveguides (Academic Press, Inc., 1974). pp. 102–103; 4–5

C. Pollock and M. Lipson, Integrated Photonics (Springer, 2003)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991)

R. Ramaswami and K. N. Sivarajan, Optical networks: a practical perspective (Morgan Kaufmann, 2002)

R. B. Dyott, Elliptical Fiber Waveguides (Artech House Publishers, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of TraNSOM measurement of counter-propagating mode profiles. Fiber optics couple light into and out of the waveguide. The power transmitted through the device is constantly monitored as the waveguide is scanned by an AFM probe. Probe-induced scattering of the forward-propagating or reflected light decrease or increase the output power respectively (inset: solid and dashed lines respectively). Based on the sign of the change in transmitted power, forward-propagating and backward-propagating reflected light can be distinguished.

Fig. 2
Fig. 2

Measurement and theory of counter-propagating waveguide modes. (a) measured change in transmission as a function of probe position for a 5 µm length of SOI waveguide. Point (A) corresponds to a region where the transmission decreases indicating light here is traveling in the forward direction. Point (B) corresponds to a region where the transmission increases indicating light here is traveling in the backward direction. (a inset, bottom left), simultaneously measured AFM topography. (b) change in transmission vs. probe position for the same length of waveguide using a short-coherence-length source which isolates the contribution of forward-propagating mode. The color scale for the relative change in transmission (see b) is the same for (a)-(d). (c), calculated near-field image of the probe-induced change in transmission over a 5 µm segment of waveguide according to our model including both forward-propagating and reflected light. This corresponds to the measured data in (a). (d) calculated near-field image considering only forward propagating light corresponding to (b). Scale bars are 1 µm.

Fig. 3
Fig. 3

Interaction between TE and TM modes in high index contrast waveguides. (a) and (b), calculated x-y cross-sectional mode profiles for y component of electric field (Ey ) of the TM and TE modes respectively plotted on the same color scale. The 100 nm layer on top of the waveguide represents a thermally grown silicon oxide which acts as a hard mask during reactive ion etchig (see Section 6). Note that although the y component of the TE mode (b) is not the major field component, due to the nanoscale waveguide geometry, at the waveguide corners the magnitude of this field is comparable to the magnitude of major component of the TM mode (a). This causes the orthogonally polarized modes to interact. (c) and (d), |Ey |2 for the TM and TE modes summed in-phase and out-of-phase respectively. (e) and (f), x-z cross sections of 3D-FDTD simulations of the evolution of an optical mode consisting of both TE and TM components as it propagates in the forward ( +z) and backward (-z) directions respectively. The forward-propagating and reflected light “lean” toward the points labeled A’ and B’ respectively. These points correspond to A and B in Fig. 2. Scale bar in (a) is 1 µm. All figures are plotted at the same scale. In (a)-(d) the TE mode power has been multiplied by a factor of 4 relative to the TM mode.

Fig. 4
Fig. 4

Schematic of the Si waveguide (green) at the input and output facet. The width of the waveguide is tapered from 460 nm to 120 nm linearly over 100 µm. In this region, the waveguide is clad with S1818 photoresist (approximately 2 µm in height) to prevent the optical mode from leaking into the substrate.

Fig. 5
Fig. 5

The measured (solid) and simulated (dotted) TraNSOM trace with a scattering efficiently of Q = 25. Inset shows a schematic of the probe cross section A which is convolved over the y component of the TE mode (ETEy ) to form the theoretical curve (dotted).

Fig. 6
Fig. 6

Change in transmission calculated according to Eq. (1) as a function of relative TE mode amplitude squared (|aTE |2) normalized to total power, and TM reflectivity at the waveguide-fiber interface. The relative reflectivity of the TE mode (RTE ) is fixed at 0.1*RTM . The “anomalous” scattering regime refers to the region where scattering by the probe results in an increase in the amount of power transmitted through the waveguide. In this region forward-propagating and reflected light can be distinguished by near-field scattering.

Fig. 7
Fig. 7

Simulated performance of anti-reflection waveguide. (a-c) x-y cross-sectional mode profiles showing | E | for various phase differences (Δø) between TE and TM modes (a) 0, (b) π, (c) π/2. Black counters outline a 250 nm square Si waveguide cladded in SiO2. The red box indicates a 50 x 50 nm region of optically absorbing material (i.e. doped Si). Based on the mode overlap with the lossy region, propagation losses for the modes are calculated to be: (a) 0.13 dB/µm, (b) 0.77 dB/µm, (c) 0.45 dB/µm. (d) x-z cross-sectional schematic of the 3DFDTD simulations of the proposed device. The low loss mode (Δø = 0) is launched from left to right and propagates over a length of waveguide (LA) with an absorbing corner. A scattering point is represented as an increased waveguide with (WR ) over a length (LR ). This defect reflects light back toward the source. Reflected and transmitted power is monitored at the planes indicated by the dashed lines. An x-y cross section of waveguide the in the absorbing region is shown in (a) where the red box indicates the location of highly doped Si. (c) snapshot of the x-component of the electric field taken through a plane 50 nm from the top of the waveguide showing the forward propagating mode leans away from the absorbing region. (d) Normalized Power Transmitted (open symbols) and Reflected (solid symbols) as a function of device length for various configurations of the scattering point: triangles: LR :0.05, WR :0.01, squares: 0.10, 0.20 circles: 0.30, 0.10 (all dimensions in µm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ T T 0 ( x ) = Q Z 0 A ( x ) | a T M E T M y e i k T M z + a T E E T E y e i k T E z | 2 d A + η Q Z 0 A ( x ) | b T M E T M y e i k T M z + b T E E T E y e i k T E z | 2 d A ,
b T M , T E = a T M , T E e α T M , T E 2 l R T M , T E ,
Δ T T 0 ( x ) = Q Z 0 A ( x ) | E T E y | 2 d A

Metrics