Abstract

The optical transmission properties of photonic crystal fibers (PCFs) can be manipulated by modifying the pattern arrangement of the air channels within them. This paper presents a novel MEMS-based technique for modifying the optical transmission properties of commercial photonic-crystal fiber (PCF) by selectively filling the voids within the fiber structure with liquid crystals. In the proposed approach, an un-cured SU-8 ring pattern with a thickness of 5 μm is fabricated using a novel stamping method. The PCF is then brought into contact with the SU-8 pattern and an infra-red (IR) laser beam is passed through the fiber in order to soften the SU-8 surface; thereby selectively sealing some of the air channels with molten SU-8. Liquid crystals (LCs) are then infiltrated into the un-sealed holes in the PCF via capillary effects in order to modify the transmission properties of the PCF. Two selectively-filled PCFs are fabricated, namely an inner-ring LC-PCF and a single-line LC-PCF, respectively. It is shown that the two LC-PCFs exhibit significantly different optical behaviors. The practical applicability of the proposed selective-filling approach is demonstrated by fabricating an electric field sensor. The experimental results show that the sensor has the ability to measure electric fields with an intensity of up to 40 kV/cm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
    [CrossRef]
  2. A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
    [CrossRef]
  3. Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
    [CrossRef]
  4. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  5. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
    [CrossRef] [PubMed]
  6. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14(15), 6800–6812 (2006).
    [CrossRef] [PubMed]
  7. J. Villatoro, M. P. Kreuzer, R. Jha, V. P. Minkovich, V. Finazzi, G. Badenes, and V. Pruneri, “Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity,” Opt. Express 17(3), 1447–1453 (2009).
    [CrossRef] [PubMed]
  8. W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
    [CrossRef]
  9. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
    [CrossRef]
  10. C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
    [CrossRef] [PubMed]
  11. S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
    [CrossRef]
  12. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, “Fluid-Filled Solid-Core Photonic Bandgap Fibers,” J. Lightwave Technol. 27(11), 1617–1630 (2009).
    [CrossRef]
  13. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. L. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005).
    [CrossRef] [PubMed]
  14. Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [CrossRef]
  15. Y. P. Wang, X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, “Improved bending property of half-filled photonic crystal fiber,” Opt. Express 18(12), 12197–12202 (2010).
    [CrossRef] [PubMed]
  16. S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
    [CrossRef]
  17. S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
    [CrossRef] [PubMed]
  18. S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
    [CrossRef]

2011 (2)

S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
[CrossRef]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
[CrossRef] [PubMed]

2010 (4)

Y. P. Wang, X. L. Tan, W. Jin, S. J. Liu, D. Q. Ying, and Y. L. Hoo, “Improved bending property of half-filled photonic crystal fiber,” Opt. Express 18(12), 12197–12202 (2010).
[CrossRef] [PubMed]

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
[CrossRef]

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

2009 (3)

2008 (4)

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. Tanggaard Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33(9), 986–988 (2008).
[CrossRef] [PubMed]

C. K. Chen, A. Laronche, G. Bouwmans, L. Bigot, Y. Quiquempois, and J. Albert, “Sensitivity of photonic crystal fiber modes to temperature, strain and external refractive index,” Opt. Express 16(13), 9645–9653 (2008).
[CrossRef] [PubMed]

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[CrossRef]

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

2007 (1)

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

2003 (1)

Albert, J.

Alfimov, M. V.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Badenes, G.

Bang, O.

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Barth, M.

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Bassi, P.

Beloglazov, V. I.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Benson, O.

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Bigot, L.

Bjarklev, A.

Borelli, E.

Bouwmans, G.

Broeng, J.

Chen, C. K.

Czapla, A.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Dabrowski, R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Dai, G. C.

Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
[CrossRef]

Demokan, M. S.

Domanski, A. W.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Eggleton, B. J.

Ertman, S.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Farrell, G.

S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
[CrossRef]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
[CrossRef] [PubMed]

Fedotov, A. B.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Finazzi, V.

Gayraud, N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Giessen, H.

Griffiths, B. C.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Han, H. S.

Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
[CrossRef]

Hand, D. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Hermann, D. S.

Ho, H. L.

Hoo, Y. L.

Huang, Y. Y.

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Ivanov, A. A.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Jha, R.

Jin, W.

Kreuzer, M. P.

Kuhlmey, B. T.

Kuo, S. M.

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[CrossRef]

Laegsgaard, J.

Laronche, A.

Larsen, T. T.

Li, J.

Lin, C. H.

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[CrossRef]

Liu, S. J.

Ludvigsen, H.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

MacPherson, W. N.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Mathews, S.

S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
[CrossRef]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
[CrossRef] [PubMed]

McNaghten, E. D.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Minkovich, V. P.

Mitrokhin, V. P.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Noordegraaf, D.

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Parkes, A. M.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Parry, J. P.

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Pruneri, V.

Quiquempois, Y.

Scolari, L.

Semenova, Y.

S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
[CrossRef]

S. Mathews, G. Farrell, and Y. Semenova, “Liquid crystal infiltrated photonic crystal fibers for electric field intensity measurements,” Appl. Opt. 50(17), 2628–2635 (2011).
[CrossRef] [PubMed]

Sidorov-Biryukov, D. A.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Smolka, S.

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Sun, Z. Y.

Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
[CrossRef]

Tan, X. L.

Tanggaard Alkeskjold, T.

Tartarini, G.

Tefelska, M.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Teipel, J.

Town, G. E.

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Villatoro, J.

Voronin, A. A.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Wang, Y. P.

Wojcik, J.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Wolinski, T. R.

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

Wu, D. K. C.

Wu, S. T.

Xiao, L.

Xu, Y.

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Yariv, A.

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Ying, D. Q.

Yuan, W.

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

Zhang, R.

Zhao, C. L.

Zheltikov, A. M.

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Smolka, M. Barth, and O. Benson, “Selectively coated photonic crystal fiber for highly sensitive fluorescence detection,” Appl. Phys. Lett. 90(11), 111101 (2007).
[CrossRef]

Y. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

IEEE Photon. Tech.Lett. (1)

S. Mathews, G. Farrell, and Y. Semenova, “Directional Electric Field Sensitivity of a Liquid Crystal Infiltrated Photonic Crystal Fiber,” IEEE Photon. Tech.Lett. 23(7), 408–410 (2011).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, “Refractive Index Sensing in an All-Solid Twin-Core Photonic Bandgap Fiber,” IEEE Sens. J. 10(7), 1192–1199 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57(8), 1796–1802 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

S. M. Kuo and C. H. Lin, “The fabrication of non-spherical microlens arrays utilizing a novel SU-8 stamping method,” J. Micromech. Microeng. 18(12), 125012 (2008).
[CrossRef]

J. Reinforced Plast. Compos. (1)

Z. Y. Sun, H. S. Han, and G. C. Dai, “Mechanical Properties of Injection-molded Natural Fiber-reinforced Polypropylene Composites: Formulation and Compounding Processes,” J. Reinforced Plast. Compos. 29(5), 637–650 (2010).
[CrossRef]

Laser Phys. Lett. (1)

A. A. Voronin, V. P. Mitrokhin, A. A. Ivanov, A. B. Fedotov, D. A. Sidorov-Biryukov, V. I. Beloglazov, M. V. Alfimov, H. Ludvigsen, and A. M. Zheltikov, “Understanding the nonlinear-optical response of a liquid-core photonic-crystal fiber,” Laser Phys. Lett. 7(1), 46–49 (2010).
[CrossRef]

Meas. Sci. Technol. (1)

J. P. Parry, B. C. Griffiths, N. Gayraud, E. D. McNaghten, A. M. Parkes, W. N. MacPherson, and D. P. Hand, “Towards practical gas sensing with micro-structured fibres,” Meas. Sci. Technol. 20(7), 075301 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) SEM image of PCF and close-up image of fiber structure (B) Use of SU-8 “tape” to selectively fill certain voids in PCF.

Fig. 2
Fig. 2

Schematic overview of LC-PCF fabrication process. (A) Thick SU-8 PR coating and soft baking. (B) SU-8 pattern exposure. (C) Ti film sputtering. (D) SU-8 pattern stamping. (E) Alignment. (F) Infrared laser heating. (G) Vacuum-assisted LC infiltration.

Fig. 3
Fig. 3

The measured relationship between the heated temperature and the input power of the IR laser. Inset indicates absorption spectrum of the coated Ti layer. Figure 3(B-E) The measured far field image of the PCF before and after different shifted splicing (B) 0 μm (C) 4 μm (D) 12 μm (E) 16 μm.

Fig. 4
Fig. 4

(A) SEM image of hexagonal open-centered SU-8 tape. (B) OM image of PCF following selective sealing process.

Fig. 5
Fig. 5

(A) Experimental setup used to evaluate transmission properties and E-field sensing performance of selectively-filled LC-PCFs. (B) Transmission spectra of un-filled PCF with and without application of external electric field.

Fig. 6
Fig. 6

(A) Transmission spectra of inner-ring LC-PCF under different electric field intensities. (B) Transmission spectra of straight-line LC-PCF under different electric field intensities. Selectively filled PCF in different configurations shows different spectra.

Fig. 7
Fig. 7

E-field sensing results for inner-ring LC-PCF. Results indicate the relationship between the applied E-field strength and measured light strength.

Metrics