Abstract

We numerically studied the polarization dynamics in dissipative soliton lasers mode-locked by nonlinear polarization rotation (NPR). It was found that the polarization states of the intracavity dissipative soliton vary with time across the pulse. Depending on output coupling ratios, the polarization states of the pulse peak before the polarizer can be either nearly circular or nearly linear polarizations. The polarization dependent component in NPR is found to play a role of spectral filter under high and medium output coupling. However, NPR may work as a weak optical limiter under low output coupling, when additional spectral filtering is necessary to maintain steady mode-locking state.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
    [CrossRef]
  2. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [CrossRef] [PubMed]
  3. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116347 .
    [CrossRef] [PubMed]
  4. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [CrossRef]
  5. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  6. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [CrossRef] [PubMed]
  7. J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
    [CrossRef] [PubMed]
  8. T. Lei, C. Tu, F. Lu, Y. Deng, and E. Li, “Numerical study on self-similar pulses in mode-locking fiber laser by coupled Ginzburg-Landau equation model,” Opt. Express 17(2), 585–591 (2009), http://www.opticsinfobase.org/abstract.cfm?id=175723 .
    [CrossRef] [PubMed]
  9. L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
    [CrossRef]
  10. L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
    [CrossRef] [PubMed]
  11. L. J. Kong, X. S. Xiao, and C. X. Yang, “Artificial spectral filtering in dissipative soliton fiber lasers,” in preparation.
  12. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron., doi:.
    [CrossRef]

2010

L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
[CrossRef]

L. Zhao, D. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[CrossRef] [PubMed]

2009

2008

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

2006

Buckley, J.

Chan, C. C.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[CrossRef] [PubMed]

Chong, A.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006), http://www.opticsinfobase.org/abstract.cfm?id=116347 .
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron., doi:.
[CrossRef]

Deng, Y.

Kieu, K.

Kong, L. J.

L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
[CrossRef]

L. J. Kong, X. S. Xiao, and C. X. Yang, “Artificial spectral filtering in dissipative soliton fiber lasers,” in preparation.

Lei, T.

Li, E.

Lu, F.

Renninger, W.

Renninger, W. H.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron., doi:.
[CrossRef]

Tang, D.

Tang, D. Y.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[CrossRef] [PubMed]

Tu, C.

Wise, F.

Wise, F. W.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron., doi:.
[CrossRef]

Wu, J.

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[CrossRef] [PubMed]

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[CrossRef] [PubMed]

Wu, X.

Xiao, X. S.

L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
[CrossRef]

L. J. Kong, X. S. Xiao, and C. X. Yang, “Artificial spectral filtering in dissipative soliton fiber lasers,” in preparation.

Yang, C. X.

L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
[CrossRef]

L. J. Kong, X. S. Xiao, and C. X. Yang, “Artificial spectral filtering in dissipative soliton fiber lasers,” in preparation.

Zhang, H.

Zhao, L.

Zhao, L. M.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[CrossRef] [PubMed]

Chin. Phys. B

L. J. Kong, X. S. Xiao, and C. X. Yang, “All-normal-dispersion Yb-doped mode-locked fiber laser and its stability analysis,” Chin. Phys. B 19(7), 074212 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse Shaping and Evolution in Normal-Dispersion Mode-Locked Fiber Lasers,” IEEE J. Sel. Top. Quantum Electron., doi:.
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2(1–2), 58–73 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

J. Wu, D. Y. Tang, L. M. Zhao, and C. C. Chan, “Soliton polarization dynamics in fiber lasers passively mode-locked by the nonlinear polarization rotation technique,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(4), 046605 (2006).
[CrossRef] [PubMed]

Other

L. J. Kong, X. S. Xiao, and C. X. Yang, “Artificial spectral filtering in dissipative soliton fiber lasers,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of a NPR mode-locked dissipative soliton fiber laser. WDM: wavelength division multiplexer, SMF: single mode fiber, HWP: half wave plate, QWP: quarter wave plate, PBS: polarization beam splitter.

Fig. 2
Fig. 2

The (a) pulses and corresponding (b) spectra at PBS in high output coupling case. Red solid line: x-polarization component (the output), Blue dash line: y-polarization component.

Fig. 3
Fig. 3

Polarization states across the pulse at different intracavity locations in high output coupling case: (a) after QWP2, (b) after SMF2, (c) after QWP1, and (d) after HWP. Red open circle: the polarization state of the wing with 1/20 intensity of the peak, red open triangle: the polarization state of the peak, blue solid dots: polarization states of the part between the peak and the wing with 1/20 intensity of the peak.

Fig. 4
Fig. 4

Transmission curves of the PBS and the combination of PBS and Gaussian filter in (a) temporal and (b) spectral domains in high output coupling case. Blue dash line: PBS, Red solid line: the combination of PBS and Gaussian filter.

Fig. 5
Fig. 5

The (a) pulses and (b) corresponding spectra at PBS in medium output coupling case. Red solid line: x-polarization component (the output), Blue dash line: y-polarization component. And the (c) polarization state traces at different intracavity locations in medium output coupling case. Red open triangle: the peak, Blue solid circle: 1/20 intensity of the peak. Black dash circle: the polarization states after HWP.

Fig. 6
Fig. 6

The (a) pulses and corresponding (b) spectra at PBS in low output coupling case. Red solid line: x-polarization component (the output), Blue dash line: y-polarization component. And the (c) polarization state traces at different intracavity locations in low output coupling case. Red open triangle: the peak, Blue solid circle: 1/20 intensity of the peak. Black dash circle: the polarization states after HWP.

Fig. 7
Fig. 7

Transmission curves of the PBS and the combination of PBS and Gaussian filter in (a) temporal and (b) spectral domains in low output coupling case. Blue dash line: PBS, Red solid line: the combination of PBS and Gaussian filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A x z = g A x i β 2 2 2 A x t 2 + β 3 6 3 A x t 3 + i γ ( | A x | 2 + 2 3 | A y | 2 ) A x ,
A y z = g A y i β 2 2 2 A y t 2 + β 3 6 3 A y t 3 + i γ ( | A y | 2 + 2 3 | A x | 2 ) A y .
g = g 0 1 + ( | A x | 2 + | A y | 2 ) d t E s a t ,

Metrics