Abstract

The laser oscillation and polarization behavior of a side-pumped Nd:YAG laser are studied theoretically and experimentally by a thermal model for a working cavity. We use this model along with the Magni method, which gives a new stability diagram, to show important characteristics of the resonator. High-power radially and azimuthally polarized laser beams are obtained with a Nd:YAG module in a plano-plano cavity. Special regions and thermal hysteresis loops are observed in the experiments, which are concordant with the theoretical predictions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan and J. R. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]
  2. Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
    [CrossRef]
  3. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, “Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam,” Opt. Lett. 32(13), 1839–1841 (2007).
    [CrossRef] [PubMed]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
    [CrossRef]
  5. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  6. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [CrossRef] [PubMed]
  7. V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
    [CrossRef]
  8. A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
    [CrossRef]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
    [CrossRef]
  10. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
    [CrossRef]
  11. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29(15), 2234–2239 (1990).
    [CrossRef] [PubMed]
  12. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
    [CrossRef]
  13. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28(10), 807–809 (2003).
    [CrossRef] [PubMed]
  14. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46(16), 3304–3310 (2007).
    [CrossRef] [PubMed]
  15. A. Ito, Y. Kozawa, and S. Sato, “Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing,” J. Opt. Soc. Am. B 26(4), 708–712 (2009).
    [CrossRef]
  16. W. Koechner, Solid-state laser engineering (Springer Verlag, 2006).
  17. N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
    [CrossRef]
  18. C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
    [CrossRef]
  19. V. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25(1), 107–117 (1986).
    [CrossRef] [PubMed]

2009

2008

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

2007

2005

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

2003

2002

2001

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[CrossRef] [PubMed]

1999

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
[CrossRef]

1993

N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
[CrossRef]

1990

1986

Ahmed, M. A.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Brown, T.

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Chang, S. H.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Cheng, C. C.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Cline, D.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
[CrossRef]

Davidson, N.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46(16), 3304–3310 (2007).
[CrossRef] [PubMed]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Ford, D. H.

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Glur, H.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Graf, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

He, P.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
[CrossRef]

Hodgson, N.

N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
[CrossRef]

Huang, T. L.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Ito, A.

Jackel, S.

Kawakami, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Kawauchi, H.

Kimura, W. D.

Kozawa, Y.

Leger, J. R.

Liu, H. P.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Liu, Y.

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
[CrossRef]

Lumer, Y.

Machavariani, G.

Magni, V.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

Meir, A.

Moser, T.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Moshe, I.

Nesterov, A. V.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
[CrossRef]

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
[CrossRef]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Parriaux, O.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Pigeon, F.

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Rahlff, C.

N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Sato, S.

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Tidwell, S. C.

Tsai, H. S.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Weber, H.

N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
[CrossRef]

Yakunin, V. P.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
[CrossRef]

Yonezawa, K.

Youngworth, K.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Zhan, Q.

Appl. Opt.

Appl. Phys. B

T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, “Polarization-selective grating mirrors used in the generation of radial polarization,” Appl. Phys. B 80(6), 707–713 (2005).
[CrossRef]

Appl. Phys. Express

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, “Cylindrical vector laser beam generated by the use of a photonic crystal mirror,” Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Appl. Phys. Lett.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys., A Mater. Sci. Process. 86(3), 329–334 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

V. G. Niziev and A. V. Nesterov, “Influence of beam polarization on laser cutting efficiency,” J. Phys. D 32(13), 1455–1461 (1999).
[CrossRef]

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, “Generation of high-power radially polarized beam,” J. Phys. D 32(22), 2871–2875 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

C. C. Cheng, T. L. Huang, S. H. Chang, H. S. Tsai, and H. P. Liu, “Observation of Less Heat Generation and Investigation of Its Effect on the Stability Range of a Nd: YAG Laser,” Jpn. J. Appl. Phys. 39(Part 1, No. 6A), 3419–3421 (2000).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

Y. Liu, D. Cline, and P. He, “Vacuum laser acceleration using a radially polarized CO2 laser beam,” Nucl. Instrum. Methods Phys. Res. A 424(2-3), 296–303 (1999).
[CrossRef]

Opt. Express

Opt. Laser Technol.

N. Hodgson, C. Rahlff, and H. Weber, “Dependence of the refractive power of Nd: YAG rods on the intracavity intensity,” Opt. Laser Technol. 25(3), 179–185 (1993).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Other

W. Koechner, Solid-state laser engineering (Springer Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a laser cavity.

Fig. 2
Fig. 2

Simulation of the laser performance with and without laser cooling taken into account: (a) Stable zones without lasing. (b) Stable zones for a working cavity. (c) Refractive power versus pump power in the loading process. (d) Output power versus pump power in the loading (solid line) and unloading (dash line) processes.

Fig. 3
Fig. 3

Laser performance in the experiment with a cavity configuration for L 1 = 833mm and L 2 = 463mm: (a) Output power versus driven current in the loading (solid line) and unloading (dash line) processes, (b) Profiles of the beams that before (upper) and after (lower) passing through a polarizer.

Fig. 4
Fig. 4

Laser performance with a cavity configuration for L 1 = 833mm and L 2 = 633mm: (a) Output power versus driven current in the loading (solid line) and unloading (dash line) processes, (b) Profiles of the beams that before (upper) and after (lower) passing through a polarizer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D r , ϕ = P h K A ( 1 2 d n d T + α C r , ϕ n 0 3 ) ,
P h = χ η L D P L D L P int ,
L = τ f τ n r ln ( R 1 / 2 V S V A ) 1 + V A ,
P int = η L D η B ln ( R 1 / 2 V S V A ) ( P L D P t h ) ,
P o u t = 1 R 1 + R P i n t ,
P t h = ln ( R 1 / 2 V S V A ) A h ν η L D η B σ τ f ,
P h = { χ η L D P L D                                                                          ( non-lasing ) { χ η B [ τ f τ n r + ( 1 V A ) / ln ( R 1 / 2 V S V A ) ] } η L D P L D + A L h ν σ τ f        ( lasing ) .
D = { 0 1 L 1 1 L 2 1 L 1 + 1 L 2 .         ( Assume L 1 > L 2 )

Metrics