Abstract

Femtosecond laser (300 fs, 500 kHz, 522 nm) fabrication of optical waveguides in bulk silica glass is extended to waveguide retarders. We study the merits of nanograting orientation (perpendicular or parallel to the waveguide) for generating high and low birefringence waveguides. This is used together with other exposure condition to control the waveguide birefringence between 10−5 and 10−4 permitting for the simultaneous fabrication of the waveguides and the tuning of the retardance demonstrating quarter and half-wave retarders in the 1200 nm to 1700 nm spectrum. The wavelength dependence of the birefringence is also characterized over a range of exposure conditions.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
    [CrossRef]
  2. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, “Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator,” Opt. Lett. 30, 1060–1062 (2005).
    [CrossRef] [PubMed]
  3. S. Eaton, W. Chen, H. Zhang, R. Iyer, J. Li, M. Ng, S. Ho, J. S. Aitchison, and P. R. Herman, “Spectral loss characterization of femtosecond laser written waveguides in glass with application to demultiplexing of 1300 and 1550 nm wavelengths,” J. Lightwave Technol. 27, 1079–1085 (2009).
    [CrossRef]
  4. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
    [CrossRef] [PubMed]
  5. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29, 1312–1314 (2004).
    [CrossRef] [PubMed]
  6. M. Ams, G. Marshall, and M. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14,, 13158–13163 (2006).
    [CrossRef] [PubMed]
  7. S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
    [CrossRef] [PubMed]
  8. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
    [CrossRef]
  9. E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
    [CrossRef] [PubMed]
  10. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, and P. Corkum, “Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass,” Opt. Lett. 32, 2888–2890 (2007).
    [CrossRef] [PubMed]
  11. Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
    [CrossRef] [PubMed]
  12. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef] [PubMed]
  13. W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
    [CrossRef] [PubMed]
  14. D. Papazoglou and M. Loulakis, “Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses,” Opt. Lett. 31, 1441–1443 (2006).
    [CrossRef] [PubMed]
  15. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
    [CrossRef] [PubMed]
  16. L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
    [CrossRef]
  17. M. Lobino and J. L. O’Brien, “Entangled photons on a chip,” Nature 469, 43–44 (2011).
    [CrossRef] [PubMed]
  18. G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
    [CrossRef] [PubMed]
  19. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
    [CrossRef]
  20. A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
    [CrossRef]
  21. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express 19, 11992–11999 (2011).
    [CrossRef] [PubMed]
  22. S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
    [CrossRef]
  23. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York,1984), 175–179.
    [PubMed]
  24. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [CrossRef]
  25. J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
    [CrossRef] [PubMed]
  26. L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef] [PubMed]
  27. H. Zhang, S. Eaton, and P. R. Herman, “Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
    [CrossRef] [PubMed]

2011 (2)

2010 (4)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
[CrossRef] [PubMed]

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (2)

2007 (3)

2006 (4)

2005 (2)

2004 (3)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

1992 (1)

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Aitchison, J. S.

Ams, M.

Arai, A.

Audouard, E.

Bado, P.

Bellouard, Y.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York,1984), 175–179.
[PubMed]

Beresna, M.

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett. 35, 1662–1664 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Betti, S.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Bhardwaj, V. R.

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York,1984), 175–179.
[PubMed]

Bricchi, E.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Burns, G. R.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

Cai, W.

Chen, W.

Cheng, G.

Colomb, T.

Corkum, P.

Corkum, P. B.

Crespi, A.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Cryan, M.J.

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

De Marchis, G.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Dekker, P.

Depeursinge, C.

Dreisow, F.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Dugan, M.

Eaton, S.

Fernandes, L. A.

Fujimoto, J. G.

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Grenier, J. R.

Guo, J.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

Heinrich, M.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Herman, P. R.

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Hnatovsky, C.

Ho, S.

Iannone, E.

S. Betti, G. De Marchis, and E. Iannone, “Polarization modulated direct detection optical transmission systems,” J. Lightwave Technol. 10, 1985–1997 (1992).
[CrossRef]

Ippen, E. P.

Iyer, R.

Kazansky, P.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

E. Bricchi, B. Klappauf, and P. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett. 29, 119–121 (2004).
[CrossRef] [PubMed]

Kazansky, P. G.

Keil, R.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Klappauf, B.

Korovin, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Kowalevicz, A. M.

Li, J.

Libertun, A. R.

Lobino, M.

M. Lobino and J. L. O’Brien, “Entangled photons on a chip,” Nature 469, 43–44 (2011).
[CrossRef] [PubMed]

Loulakis, M.

Luk, T. S.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

Marques, P. V. S.

Marshall, G.

Mataloni, P.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Matthews, J.

Mauclair, C.

Minoshima, K.

Mishchik, K.

Miura, K.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Ng, M.

Nolte, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

O’Brien, J.

O’Brien, J. L.

M. Lobino and J. L. O’Brien, “Entangled photons on a chip,” Nature 469, 43–44 (2011).
[CrossRef] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[CrossRef] [PubMed]

O’Brien, J.L.

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

Osellame, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Papazoglou, D.

Peschel, U.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Piestun, R.

Politi, A.

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[CrossRef] [PubMed]

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

Qiu, J

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Rajeev, P.

Ramirez, L.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Ramponi, R.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Rarity, J.G.

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

Rayner, D.

Rayner, D. M.

Richter, S.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Said, A.

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Sansoni, L.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Sciarrino, F.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Shah, L.

Sharma, V.

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Simova, E.

Stoian, R.

Taylor, R.

Taylor, R. S.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Tunnermann, A.

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

Vallone, G.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Vawter, G. A.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

Withford, M.

Yang, P.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

Yu, S.

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

Zhang, H.

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. Kazansky, M. Beresna, J Qiu, K. Miura, and K. Hirao, “Ultrafast manipulation of self-assembled form birefringence in glass,” Adv. Mater. 22, 4039–4043 (2010).
[CrossRef] [PubMed]

Appl. Phys. A: Mater. Sci. Process. (2)

L. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. Korovin, U. Peschel, S. Nolte, and A. Tunnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A: Mater. Sci. Process. 100, 1–6 (2010).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A: Mater. Sci. Process. 77, 109–111 (2003).
[CrossRef]

J. Appl. Phys (1)

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys 95, 5280–5283 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[CrossRef]

Nature (1)

M. Lobino and J. L. O’Brien, “Entangled photons on a chip,” Nature 469, 43–44 (2011).
[CrossRef] [PubMed]

Opt. Express (8)

G. Marshall, A. Politi, J. Matthews, P. Dekker, M. Ams, M. Withford, and J. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[CrossRef] [PubMed]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef] [PubMed]

W. Cai, A. R. Libertun, and R. Piestun, “Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings,” Opt. Express 14, 3785–3791 (2006).
[CrossRef] [PubMed]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[CrossRef] [PubMed]

M. Ams, G. Marshall, and M. Withford, “Study of the influence of femtosecond laser polarisation on direct writing of waveguides,” Opt. Express 14,, 13158–13163 (2006).
[CrossRef] [PubMed]

S. Eaton, H. Zhang, M. Ng, J. Li, W. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008).
[CrossRef] [PubMed]

L. Shah, A. Arai, S. Eaton, and P. R. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef] [PubMed]

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express 19, 11992–11999 (2011).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. Lett. (1)

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010).
[CrossRef]

Science (2)

A. Politi, M.J. Cryan, J.G. Rarity, S. Yu, and J.L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 5876, 646–649 (2008).
[CrossRef]

J. L. O’Brien, “Optical quantum computing,” Science 318, 1567–1570 (2007).
[CrossRef] [PubMed]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984 (IEEE, New York,1984), 175–179.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the waveguide fabrication where EPar and EPer represent the parallel and perpendicular polarizations of the writing laser respectively. EV and EH indicate the electric field orientation of Vertical, V, and Horizontal, H, waveguide polarization modes, respectively.

Fig. 2
Fig. 2

Transmission spectra of two BGWs written with parallel (a) and perpendicular (b) polarizations of the writing laser with 160 nJ pulse energy and probed with vertical polarized modes ( oe-19-19-18294-i001.jpg blue solid line) and horizontal polarized modes ( oe-19-19-18294-i002.jpg red dashed line).

Fig. 3
Fig. 3

Normalized spectrum for Pp ( oe-19-19-18294-i003.jpg blue solid line) andPc ( oe-19-19-18294-i004.jpg red dashed line) for (a) parallel and (b) perpendicular polarizations of the writing laser with 160 nJ pulse energy and for 45° linearly polarized input light. The λ/4 and λ/2 markers indicate wavelengths where the waveguide operates as a quarter-wave and half-wave retarder.

Fig. 4
Fig. 4

Birefringence as a function of the wavelength for (a) perpendicular and parallel polarizations of the writing laser with 160 nJ pulse energy and 0.27 mm/s scanning speed (averaged over 5 samples) and (b) various laser pulse energies for parallel polarized writing at 0.27 mm/s scanning speed.

Fig. 5
Fig. 5

Polarization analyzer response of a quarter-wave ( oe-19-19-18294-i005.jpg blue square) and a half-wave plate ( oe-19-19-18294-i006.jpg red circle) response of a 25.4 cm long waveguide fabricated with parallel polarization writing at 160 nJ pulse energy.

Tables (2)

Tables Icon

Table 1 Waveguide Properties for Various Pulse Energy Exposure for Parallel Polarization of the Writing Laser

Tables Icon

Table 2 Waveguide Properties for Various Pulse Energy Exposure for Perpendicular Polarization of the Writing Laser

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ λ B 2 Λ .
P p = P p m P o = 1 2 ( 1 + cos δ ) ,
P c = P c m P o = 1 2 ( 1 cos δ ) .
δ = ± arccos ( P p P c ) + m 2 π ,
Δ n = δ λ 2 π L .

Metrics