Abstract

Minimum achievable temperature of ~110 K is measured in a 5% doped Yb:YLF crystal at λ = 1020 nm, corresponding to E4-E5 resonance of Stark manifold. This measurement is in excellent agreement with the laser cooling model and was made possible by employing a novel and sensitive implementation of differential luminescence thermometry using balanced photo-detectors.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
    [CrossRef]
  2. M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
    [CrossRef]
  3. M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1-2), 67–84 (2009).
    [CrossRef]
  4. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  5. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
    [CrossRef]
  6. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
    [CrossRef]
  7. G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
    [CrossRef]
  8. S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
    [CrossRef]
  9. R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).
  10. G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
    [CrossRef]
  11. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
    [CrossRef]
  12. D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-17-18061 .
    [CrossRef] [PubMed]
  13. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
    [CrossRef]
  14. M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
    [CrossRef]
  15. W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
    [CrossRef]
  16. G. Nemova and R. Kashyap, “Temperature distribution in laser-cooled rare-earth doped solid-state samples,” J. Opt. Soc. Am. B 27(12), 2460–2464 (2010).
    [CrossRef]
  17. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
    [CrossRef]
  18. J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
    [CrossRef]
  19. M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
    [CrossRef]
  20. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
    [CrossRef]
  21. Y. P. Varshni, “Band‐to‐band radiative recombination in groups IV, VI, and III‐V semiconductors (I),” Phys. Status Solidi B 19(2), 459–514 (1967).
    [CrossRef]
  22. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
    [CrossRef]
  23. B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
    [CrossRef]
  24. D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
    [CrossRef]
  25. W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
    [CrossRef]
  26. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-5-2922 .
    [CrossRef] [PubMed]
  27. J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
    [CrossRef]
  28. D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
    [CrossRef]

2011 (1)

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

2010 (6)

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-17-18061 .
[CrossRef] [PubMed]

G. Nemova and R. Kashyap, “Temperature distribution in laser-cooled rare-earth doped solid-state samples,” J. Opt. Soc. Am. B 27(12), 2460–2464 (2010).
[CrossRef]

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

2009 (2)

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1-2), 67–84 (2009).
[CrossRef]

2008 (1)

2007 (3)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

2006 (2)

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

2005 (2)

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

2001 (1)

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

1999 (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

1998 (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

1997 (2)

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

1967 (1)

Y. P. Varshni, “Band‐to‐band radiative recombination in groups IV, VI, and III‐V semiconductors (I),” Phys. Status Solidi B 19(2), 459–514 (1967).
[CrossRef]

1946 (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

1929 (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Adam, J. L.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Anderson, J. E.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Arriandiaga, M. A.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Balda, R.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Bender, D.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Bonelli, L.

Bowman, S. R.

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Coluccelli, N.

Di Lieto, A.

Distel, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Edwards, B. C.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Epstein, R.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Epstein, R. I.

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1-2), 67–84 (2009).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Fernández, J.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Galzerano, G.

García, A. J.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Gosnell, T. R.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Greenfield, S. R.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Hasselbeck, M.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Hasselbeck, M. P.

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

Hehlen, M. P.

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Imangholi, B.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Inoue, H.

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Kashyap, R.

Kurtz, S.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Landau, L.

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Laporta, P.

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-17-18061 .
[CrossRef] [PubMed]

Mendioroz, A.

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Mills, G.

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

Mills, G. L.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Mord, A.

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

Mord, A. J.

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

Mungan, C. E.

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Murtagh, M. T.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Nemova, G.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Patterson, W. M.

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

Pringsheim, P.

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

Seletskiy, D. V.

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-17-18061 .
[CrossRef] [PubMed]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of a semiconductor load to 165 K,” Opt. Express 18(17), 18061–18066 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-17-18061 .
[CrossRef] [PubMed]

W. M. Patterson, D. V. Seletskiy, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Measurement of solid-state optical refrigeration by two-band differential luminescence thermometry,” J. Opt. Soc. Am. B 27(3), 611–618 (2010).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1-2), 67–84 (2009).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Sigel, G. H.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

Thiede, J.

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Tonelli, M.

Varshni, Y. P.

Y. P. Varshni, “Band‐to‐band radiative recombination in groups IV, VI, and III‐V semiconductors (I),” Phys. Status Solidi B 19(2), 459–514 (1967).
[CrossRef]

Wang, C.

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

Appl. Phys. Lett. (2)

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71(11), 1458–1460 (1997).
[CrossRef]

J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, “Cooling to 208 K by optical refrigeration,” Appl. Phys. Lett. 86(15), 154107 (2005).
[CrossRef]

Cryogenics (1)

G. Mills and A. Mord, “Performance modeling of optical refrigerators,” Cryogenics 46(2-3), 176–182 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. R. Bowman, “Lasers without internal heat generation,” IEEE J. Quantum Electron. 35(1), 115–122 (1999).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, “Spectroscopic evaluation of Yb3+-doped glasses for optical refrigeration,” IEEE J. Quantum Electron. 34(10), 1839–1845 (1998).
[CrossRef]

J. Appl. Phys. (3)

W. M. Patterson, M. Sheik-Bahae, R. I. Epstein, and M. P. Hehlen, “Model of laser-induced temperature changes in solid-state optical refrigerators,” J. Appl. Phys. 107(6), 063108 (2010).
[CrossRef]

B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86(11), 6489–6493 (1999).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. (Moscow) (1)

L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).

Laser Photon. Rev. (1)

M. Sheik-Bahae and R. I. Epstein, “Laser cooling of solids,” Laser Photon. Rev. 3(1-2), 67–84 (2009).
[CrossRef]

Nat. Photonics (2)

M. Sheik-Bahae and R. I. Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699 (2007).
[CrossRef]

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Photonics 4(3), 161–164 (2010).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377(6549), 500–503 (1995).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

J. Fernández, A. Mendioroz, A. J. García, R. Balda, J. L. Adam, and M. A. Arriandiaga, “On the origin of anti-Stokes laser-induced cooling of Yb3+-doped glass,” Opt. Mater. 16(1-2), 173–179 (2001).
[CrossRef]

Phys. Rev. B (1)

M. P. Hehlen, R. I. Epstein, and H. Inoue, “Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN,” Phys. Rev. B 75(14), 144302 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Laser cooling of a solid by 16 K starting from room temperature,” Phys. Rev. Lett. 78(6), 1030–1033 (1997).
[CrossRef]

Phys. Status Solidi B (1)

Y. P. Varshni, “Band‐to‐band radiative recombination in groups IV, VI, and III‐V semiconductors (I),” Phys. Status Solidi B 19(2), 459–514 (1967).
[CrossRef]

Proc. SPIE (4)

B. Imangholi, M. Hasselbeck, D. Bender, C. Wang, M. Sheik-Bahae, R. Epstein, and S. Kurtz, “Differential luminescence thermometry in semiconductor laser cooling,” Proc. SPIE 6115, 61151C (2006).
[CrossRef]

D. V. Seletskiy, M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Fast differential luminescence thermometry,” Proc. SPIE 7228, 72280K (2009).
[CrossRef]

M. P. Hasselbeck, M. Sheik-Bahae, and R. I. Epstein, “Effect of high carrier density on luminescence thermometry in semiconductors,” Proc. SPIE 6461, 646107 (2007).
[CrossRef]

D. V. Seletskiy, R. I. Epstein, and M. Sheik-Bahae, “Progress toward sub-100 Kelvin operation of an optical cryocooler,” Proc. SPIE 7951, 795103 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

G. Nemova and R. Kashyap, “Laser cooling of solids,” Rep. Prog. Phys. 73(8), 086501 (2010).
[CrossRef]

Z. Phys. (1)

P. Pringsheim, “Zwei bemerkungen uber den unterschied von lumineszenz- und temperaturstrahlung,” Z. Phys. 57(11-12), 739–746 (1929).
[CrossRef]

Other (1)

R. Epstein and M. Sheik-Bahae, Optical Refrigeration: Science and Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the Stark manifold associated with 2F7/22F5/2 transition in Yb3+ ion; (b) Calculated temperature-dependent spectra of the cooling efficiency ηc of a 5% Yb3+:YLF4 crystal for E||c orientation with ηext = 0.995 ± 0.001 and αb = (4.0 ± 0.2) × 10−4 cm−1, as determined from the fit of the experimental data at 300 K (black circles). Transition from cooling to heating-only occurs between 120 K (blue line) and 110 K (red line), bracketing a minimum achievable temperature at ~115 K near 1020 nm, corresponding to E4-E5 Stark manifold transition of Yb3+. Resonant feature corresponding to E3-E5 transition is also evident at ~1010 nm, but does not lead to cooling efficiency enhancement for given values of ηext and αb .

Fig. 2
Fig. 2

(a) Schematic of the pump-probe setup, BAPD – balanced amplified photodiode, signal (V) is proportional to the change of temperature (ΔT); (b) Normalized calculated and box-car averaged thermo-spectral derivative (orange line) of a GaAs DHS evaluated at λ0 and T0 = 300K is plotted versus λ0 together with the normalized magnitude of a measured differential modulated signal (V) (black circles); (c) Modulated pump (green) and temperature (red), as obtained from the probe signal when GaAs semiconductor is excited by 50 mW of 532nm pump and monitored at λ0 ~870 nm; (d) Magnification of the panel (c) around t = 0 point; resolution of ~250 μK is demonstrated after 10,000 waveform averages on an oscilloscope.

Fig. 3
Fig. 3

(a) Schematic of the experimental arrangement: Yb:YLF is clamped by the coldfinger arrangement that is held at T0; local temperature change due to the pump beam is detected via luminescence from a GaAs/InGaP double heterostructure, excited in turn by the probe laser. Thermal buffers serve to maximize local signal, while maintaining Yb:YLF temperature near the T0 setpoint; (b) Normalized and vertically-shifted time traces of the spectral derivative signals, showing a clear phase-reversal between the heating (980 nm) and cooling (1020 nm) excitations at room temperature; (c) comparison of the contour plot of the calculated cooling efficiency with the measurement (circles) of the wavelength-dependent minimum achievable temperature MAT(λ), separating cooling (blue) and heating (red) regions, cooling to 110 ± 5 K at ~1020 nm is demonstrated; inset shows energy diagram (not to scale) of the Yb3+ Stark level manifold.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η c ( λ , T ) = P c o o l P a b s = η e x t [ 1 1 + α b / α ( λ , T ) ] λ λ f ( T ) 1 ,
V ( λ 0 , T 0 ) S ( λ 0 + Δ λ , T 0 ) S ( λ 0 Δ λ , T 0 ) ( S λ | λ 0 , T 0 ) ,
V ( Δ T , λ 0 ) ( S λ | λ 0 , T 0 ) + T ( S λ | λ 0 ) | T 0 Δ T + Ο [ ( Δ T ) 2 ] .

Metrics