R. Kumar, D. P. Jena, and C. Shakher, “Application of wavelet transform and image morphology in processing vibration speckle interferogram for automatic analysis,” Proc. SPIE 8082, 80821Y, 80821Y-5 (2011).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal. 1(01), 1–41 (2009).

[CrossRef]

Z. Wu, N. E. Huang, and X. Chen, “The multi-dimensional ensemble empirical mode decomposition,” Adv. Adapt. Data Anal. 1(03), 339–372 (2009).

[CrossRef]

Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 23(4), 1327–1338 (2009).

[CrossRef]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett. 34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

R. Kumar, I. P. Singh, and C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41(1), 81–93 (2004).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

R. Kumar, “Wavelet filtering applied to time-average digital speckle pattern interferometry fringes,” Opt. Laser Technol. 33(8), 567–571 (2001).

[CrossRef]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40(11), 2598–2604 (2001).

[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37(8), 2395 (1998).

[CrossRef]

A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vibrat. 31(3), 257–293 (1973).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).

[CrossRef]

Z. Wu, N. E. Huang, and X. Chen, “The multi-dimensional ensemble empirical mode decomposition,” Adv. Adapt. Data Anal. 1(03), 339–372 (2009).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45(9), 1909–1916 (2006).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44(14), 2728–2735 (2005).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40(11), 2598–2604 (2001).

[CrossRef]

Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 23(4), 1327–1338 (2009).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal. 1(01), 1–41 (2009).

[CrossRef]

Z. Wu, N. E. Huang, and X. Chen, “The multi-dimensional ensemble empirical mode decomposition,” Adv. Adapt. Data Anal. 1(03), 339–372 (2009).

[CrossRef]

R. Kumar, D. P. Jena, and C. Shakher, “Application of wavelet transform and image morphology in processing vibration speckle interferogram for automatic analysis,” Proc. SPIE 8082, 80821Y, 80821Y-5 (2011).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45(9), 1909–1916 (2006).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44(14), 2728–2735 (2005).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40(11), 2598–2604 (2001).

[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37(8), 2395 (1998).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

R. Kumar, D. P. Jena, and C. Shakher, “Application of wavelet transform and image morphology in processing vibration speckle interferogram for automatic analysis,” Proc. SPIE 8082, 80821Y, 80821Y-5 (2011).

[CrossRef]

R. Kumar, I. P. Singh, and C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41(1), 81–93 (2004).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

R. Kumar, “Wavelet filtering applied to time-average digital speckle pattern interferometry fringes,” Opt. Laser Technol. 33(8), 567–571 (2001).

[CrossRef]

Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 23(4), 1327–1338 (2009).

[CrossRef]

A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vibrat. 31(3), 257–293 (1973).

[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37(8), 2395 (1998).

[CrossRef]

R. Kumar, D. P. Jena, and C. Shakher, “Application of wavelet transform and image morphology in processing vibration speckle interferogram for automatic analysis,” Proc. SPIE 8082, 80821Y, 80821Y-5 (2011).

[CrossRef]

R. Kumar, I. P. Singh, and C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41(1), 81–93 (2004).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

R. Kumar, I. P. Singh, and C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41(1), 81–93 (2004).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal. 1(01), 1–41 (2009).

[CrossRef]

Z. Wu, N. E. Huang, and X. Chen, “The multi-dimensional ensemble empirical mode decomposition,” Adv. Adapt. Data Anal. 1(03), 339–372 (2009).

[CrossRef]

Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 23(4), 1327–1338 (2009).

[CrossRef]

Z. Wu and N. E. Huang, “Ensemble empirical mode decomposition: a noise assisted data analysis method,” Adv. Adapt. Data Anal. 1(01), 1–41 (2009).

[CrossRef]

Z. Wu, N. E. Huang, and X. Chen, “The multi-dimensional ensemble empirical mode decomposition,” Adv. Adapt. Data Anal. 1(03), 339–372 (2009).

[CrossRef]

T. R. Crimmins, “Geometric filter for speckle reduction,” Appl. Opt. 24(10), 1438–1443 (1985).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44(14), 2728–2735 (2005).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45(9), 1909–1916 (2006).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9(3), 81–84 (2002).

[CrossRef]

A. W. Leissa, “The free vibration of rectangular plates,” J. Sound Vibrat. 31(3), 257–293 (1973).

[CrossRef]

Y. Lei, Z. He, and Y. Zi, “Application of the EEMD method to rotor fault diagnosis of rotating machinery,” Mech. Syst. Signal Process. 23(4), 1327–1338 (2009).

[CrossRef]

C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Opt. Eng. 41(1), 176 (2002).

[CrossRef]

A. Federico and G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40(11), 2598–2604 (2001).

[CrossRef]

P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37(8), 2395 (1998).

[CrossRef]

R. Kumar, “Wavelet filtering applied to time-average digital speckle pattern interferometry fringes,” Opt. Laser Technol. 33(8), 567–571 (2001).

[CrossRef]

R. Kumar, I. P. Singh, and C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41(1), 81–93 (2004).

[CrossRef]

R. Kumar, D. P. Jena, and C. Shakher, “Application of wavelet transform and image morphology in processing vibration speckle interferogram for automatic analysis,” Proc. SPIE 8082, 80821Y, 80821Y-5 (2011).

[CrossRef]

C. Loizou, C. Christodoulou, C. S. Pattichis, R. Istepanian, M. Pantziaris, and A. Nicolaides, “Speckle reduction in ultrasound images of atherosclerotic carotid plaque,” Proc. IEEE 14th Intl. Conf. Digital Signal Process, 525–528 (2002).

K. Creath, “Temporal phase method,” in Interferogram Analysis, D. Robinson, and G. Reid, eds. (Institute of Physics, 1993), pp. 94–140.