Abstract

Several configurations of ultralong Raman fiber lasers (URFL) based on a distributed mirror combined with Bragg gratings or fiber loop mirrors are studied. Two continuous-wave URFL configurations, with single and cascaded cavities using fiber Bragg gratings as mirrors are explored for a 300 km long fiber. For optical sensing, the cavity length was optimized for 250 km using one of the gratings an intensity sensor. Another URFL configuration based in a fiber loop mirror is also reported. For optical sensing using a 300 km long fiber it is shown that the best choice is a hybrid configuration. The sensitivity of the FBG laser sensor range was from (76 ± 2) × 10−6 με−1 (for lower strain) to (9.0 ± 0.4) × 10−6 με−1 (for higher strain).

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).
  2. J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
    [CrossRef] [PubMed]
  3. J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
    [CrossRef] [PubMed]
  4. S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
    [CrossRef] [PubMed]
  5. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
    [CrossRef] [PubMed]
  6. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
    [CrossRef]
  7. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
    [CrossRef]
  8. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
    [CrossRef] [PubMed]
  9. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
    [CrossRef]
  10. O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
    [CrossRef]
  11. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).
  12. S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
    [CrossRef] [PubMed]
  13. J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
    [CrossRef]
  14. T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
    [CrossRef]
  15. Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
    [CrossRef]

2011 (1)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

2010 (4)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. Martin-Lopez, M. Alcon-Camas, F. Rodriguez, P. Corredera, J. D. Ania-Castañon, L. Thévenaz, and M. Gonzalez-Herraez, “Brillouin optical time-domain analysis assisted by second-order Raman amplification,” Opt. Express 18(18), 18769–18778 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

2008 (2)

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

2006 (1)

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

1995 (1)

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Alcon-Camas, M.

Ania-Castañon, J. D.

Ania-Castañón, J. D.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Babin, S. A.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Baptista, J. M.

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Chang, J. S.

Chen, X.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Chen, Z.

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

Cheung, W. Y.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Churkin, D.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Corredera, P.

Correia, C.

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Digiovanni Grubb, D. J.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Ellingham, T. J.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

El-Taher, A. E.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Erdogan, T.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Feng, S.

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

Frazão, O.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).

Gonzalez-Herraez, M.

Grubb, S. G.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Harper, P.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

Hu, J.

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

Ibbotson, R.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Iida, H.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Iki, Y.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Jiang, Q.

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Karalekas, V.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

Kim, P.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Lee, J. H.

Lemaire, P. J.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Lopez-Amo, M.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Marques, M. B.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).

Martin-Lopez, S.

Martins, H. F.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).

Mezentsev, V. K.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Min, B.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Miyagi, K.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Mizrahi, V.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Nakamura, K.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Ng, J.

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

Park, K. D.

Park, N.

K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, and J. S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett. 27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

Pinto, A. M. R.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

Podivilov, E. V.

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Ran, Z.-L.

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

Rao, Y. J.

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

Reed, W. A.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Rodriguez, F.

Saitoh, T.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Santos, J. L.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Strasser, T.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Takahashi, Y.

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Thévenaz, L.

Turitsyn, S. K.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Vengsarkar, A. M.

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Yang, X.

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

Yu, Ch.

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

Zhang, L.

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (2)

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B (to be published).

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett. 13(12), 1352–1354 (2001).
[CrossRef]

J. Hu, Z. Chen, X. Yang, J. Ng, and Ch. Yu, “100-km Long Distance Fiber Bragg Grating Sensor System Based on Erbium-Doped Fiber and Raman Amplification,” IEEE Photon. Technol. Lett. 22(19), 1422–1424 (2010).
[CrossRef]

J. Light. Techn. (1)

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities,” J. Light. Techn. 29(10), 1482–1488 (2011).
[CrossRef]

Meas. Sci. Technol. (1)

O. Frazão, C. Correia, J. M. Baptista, and J. L. Santos, “Raman fibre Bragg-grating laser sensor with cooperative Rayleigh scattering for strain-temperature measurement,” Meas. Sci. Technol. 20(4), 045203 (2009).
[CrossRef]

Opt. Amp. Appl. (1)

S. G. Grubb, T. Strasser, W. Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. Digiovanni Grubb, “High-Power 1.48 µm Cascaded Raman Laser in Germanosilicate Fibers,” Opt. Amp. Appl. 18, 197–199 (1995).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (3)

J. D. Ania-Castañón, T. J. Ellingham, R. Ibbotson, X. Chen, L. Zhang, and S. K. Turitsyn, “Ultralong Raman fiber lasers as virtually lossless optical media,” Phys. Rev. Lett. 96(2), 023902 (2006).
[CrossRef] [PubMed]

J. D. Ania-Castañón, V. Karalekas, P. Harper, and S. K. Turitsyn, “Simultaneous spatial and spectral transparency in ultralong fiber lasers,” Phys. Rev. Lett. 101(12), 123903 (2008).
[CrossRef] [PubMed]

S. K. Turitsyn, J. D. Ania-Castañón, S. A. Babin, V. Karalekas, P. Harper, D. Churkin, S. I. Kablukov, A. E. El-Taher, E. V. Podivilov, and V. K. Mezentsev, “270-km ultralong Raman fiber laser,” Phys. Rev. Lett. 103(13), 133901 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

T. Saitoh, K. Nakamura, Y. Takahashi, H. Iida, Y. Iki, and K. Miyagi, “Ultra-long-distance (230 km) FBG sensor system,” Proc. SPIE 7004, 70046C, 70046C-4 (2008).
[CrossRef]

Y. J. Rao, S. Feng, Q. Jiang, and Z.-L. Ran, “Ultra-long distance (300km) fiber Bragg grating sensor system using hybrid EDF and Raman amplification,” Proc. SPIE 7503, 75031Q, 75031Q-4 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) simple URFL and b) cascaded URFL configurations.

Fig. 2
Fig. 2

Relationship between the laser output power and pump power in each pump (inset figures: spectral response of the two lasers with the same pump power).

Fig. 3
Fig. 3

Strain measurement of the FBG laser sensor.

Fig. 4
Fig. 4

URFL configuration with a) two FLMs and b) FLM combined with FBG.

Fig. 5
Fig. 5

Laser output power with input pump power in each pump.

Fig. 6
Fig. 6

Strain measurement of the FBG laser sensor.

Metrics