Abstract

The design of a new type of plasmonic ultra-high extinction ratio micropolarizing transmission filter is presented along with an experimental demonstration. A pair of dielectric coated metal gratings couple incident TM polarized light into surface plasmons, which are fed into a central metal-insulator-metal (MIM) waveguide, followed by transmission through a sub-wavelength aperture. Extinction ratios exceeding 1011 are predicted by finite element simulation. Good absolute agreement for both the spectral and polarization response is obtained between measurement and simulations using measured geometric parameters. The filters can be easily fabricated and sized to match the pixel pitch of current focal plane arrays.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  2. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, and A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [CrossRef] [PubMed]
  3. L. B. Wolff, “Applications of polarization camera technology,” IEEE Intell. Syst. 10(5), 30–38 (1995).
  4. L. B. Wolff, “Surface orientation from polarization images,” Proc. SPIE 850, 110–121 (1995).
  5. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
    [CrossRef]
  6. X. J. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19(6), 5565–5573 (2011).
    [CrossRef] [PubMed]
  7. G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960).
    [CrossRef]
  8. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16(5), 1168–1174 (1999).
    [CrossRef]
  9. J. Guo and D. J. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39(10), 1486–1492 (2000).
    [CrossRef] [PubMed]
  10. J. Zhang, Y. Yan, X. Cao, and L. Zhang, “Microarrays of silver nanowires embedded in anodic alumina membrane templates: size dependence of polarization characteristics,” Appl. Opt. 45(2), 297–304 (2006).
    [CrossRef] [PubMed]
  11. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  12. A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
    [CrossRef] [PubMed]
  13. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33(15), 1653–1655 (2008).
    [CrossRef] [PubMed]
  14. M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
    [CrossRef]
  15. Y. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 microm,” Appl. Opt. 47(20), 3555–3560 (2008).
    [CrossRef] [PubMed]
  16. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292–19303 (2010).
    [CrossRef] [PubMed]
  17. P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007).
    [CrossRef] [PubMed]
  18. Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
    [CrossRef]
  19. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 2002).
  20. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  21. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
    [CrossRef] [PubMed]
  22. A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
    [CrossRef] [PubMed]
  23. D. A. LeMaster, “Stokes image reconstruction for two-color microgrid polarization imaging systems,” Opt. Express 19(15), 14604–14616 (2011).
    [CrossRef] [PubMed]
  24. A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
    [CrossRef]
  25. H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]

2011

2010

2009

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

A. Stalmashonak, G. Seifert, A. A. Unal, U. Skrzypczak, A. Podlipensky, A. Abdolvand, and H. Graener, “Toward the production of micropolarizers by irradiation of composite glasses with silver nanoparticles,” Appl. Opt. 48(25), F37–F44 (2009).
[CrossRef] [PubMed]

2008

2007

P. D. Flammer, I. C. Schick, R. T. Collins, and R. E. Hollingsworth, “Interference and resonant cavity effects explain enhanced transmission through subwavelength apertures in thin metal films,” Opt. Express 15(13), 7984–7993 (2007).
[CrossRef] [PubMed]

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

2006

2002

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2000

1999

1995

L. B. Wolff, “Applications of polarization camera technology,” IEEE Intell. Syst. 10(5), 30–38 (1995).

L. B. Wolff, “Surface orientation from polarization images,” Proc. SPIE 850, 110–121 (1995).

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

1960

G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960).
[CrossRef]

Abdolvand, A.

Abdulhalim, I.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Aharon, O.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Antonelli, M.-R.

Arnon, O.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Benali, A.

Bermak, A.

Bird, G. R.

G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960).
[CrossRef]

Boussaid, F.

Boye, R. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

Brady, D. J.

Cao, X.

Carter, T. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

Chenault, D. B.

Chigrinov, V. G.

Chipman, R. A.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Collins, R. T.

Cruz-Cabrera, A. A.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

De Martino, A.

Degiron, A. S.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Deguzman, P. C.

Devaux, E.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dunbar, L. A.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Eckert, R.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Engheta, N.

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Flammer, P. D.

Garcia-Vidal, F. J.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Gayet, B.

Goldstein, D. L.

Graener, H.

Grenet, E.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Gruev, V.

Guillaumée, M.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Guo, J.

Ho, S.-T.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[CrossRef]

Hollingsworth, R. E.

Jones, M. W.

Kemme, S. A.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

Klotzkin, D. J.

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

LeMaster, D. A.

Lezec, H. J.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martin, O. J. F.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Martin-Moreno, L.

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Meier, J. T.

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

Mor, S.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Nordin, G. P.

Novikova, T.

Parrish, M.

G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960).
[CrossRef]

Perkins, R.

Pezzaniti, J. L.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Pierangelo, A.

Podlipensky, A.

Powers, P. E.

Rosenberg, L.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Safrani, A.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

Samora, S.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

Santschi, Ch.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Sarangan, A. M.

Schick, I. C.

Seifert, G.

Shaw, J. A.

Skrzypczak, U.

Stalmashonak, A.

Stanley, R. P.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

Tyo, J. S.

Unal, A. A.

Validire, P.

Van der Spiegel, J.

Wang, Q.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[CrossRef]

Wendt, J. R.

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

Wolff, L. B.

L. B. Wolff, “Applications of polarization camera technology,” IEEE Intell. Syst. 10(5), 30–38 (1995).

L. B. Wolff, “Surface orientation from polarization images,” Proc. SPIE 850, 110–121 (1995).

Wu, Z.

Yan, Y.

York, T.

Zhan, Q.

Zhang, J.

Zhang, L.

Zhao, X. J.

Zhou, Y.

Appl. Opt.

Appl. Phys. Lett.

M. Guillaumée, L. A. Dunbar, Ch. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94(19), 193503 (2009).
[CrossRef]

IEEE Intell. Syst.

L. B. Wolff, “Applications of polarization camera technology,” IEEE Intell. Syst. 10(5), 30–38 (1995).

IEEE Photonics J.

Q. Wang and S.-T. Ho, “Ultracompact TM-pass silicon nanophotonic waveguide polarizer and design,” IEEE Photonics J. 2(1), 49–56 (2010).
[CrossRef]

J. Biomed. Opt.

A. Safrani, O. Aharon, S. Mor, O. Arnon, L. Rosenberg, and I. Abdulhalim, “Skin biomedical optical imaging system using dual-wavelength polarimetric control with liquid crystals,” J. Biomed. Opt. 15(2), 026024 (2010).
[CrossRef] [PubMed]

J. Chem. Phys.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125(16), 164705 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

G. R. Bird and M. Parrish., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. B 50(9), 886–891 (1960).
[CrossRef]

Opt. Eng.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34(6), 1558–1568 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

A. A. Cruz-Cabrera, S. A. Kemme, J. R. Wendt, R. R. Boye, T. R. Carter, and S. Samora, “Polarimetric imaging cross talk effects from glue separation between FPA and micropolarizer arrays at the MWIR,” Proc. SPIE 6478, 64780Q, 64780Q-13 (2007).
[CrossRef]

L. B. Wolff, “Surface orientation from polarization images,” Proc. SPIE 850, 110–121 (1995).

Science

H. J. Lezec, A. S. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other

J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, New York, 2002).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Plasmonic micropolarizer structure. (a) Central structure of linear micropolarizer showing aperture, cavity and first grating period. The taper angles of the aperture and gratings along with the dielectric profile were chosen to match the fabricated structures. (b) Simulated time average power flow through the aperture of a structure with 635 nm period input gratings having 19 grooves per side.

Fig. 2
Fig. 2

Polarization super-pixel: illustration of how to integrate the structure as a super-pixel, which can be laid on a detector array. The inset shows a snapshot of the magnetic field perpendicular to the plane for the structure of Fig. 4 (with 20 grooves). The arrows under the aperture are the time average Poynting vector of the light exiting the aperture.

Fig. 3
Fig. 3

Measured and simulated spectral response: model validation and ultra-high extinction ratio prediction. (a) Measured and simulated absolute TM transmission through a high-selectivity structure with 500 nm period input gratings having 19 grooves per side. The inset shows a representative SEM image of a complete structure and an off-angle detail of the central region. (b) TE transmission with the curve labeled 'TE simulation' estimating power collected by the microscope objective, and the 'TE near field' curve simulating all of the power exiting the aperture. (c) TM/TE extinction ratios. The measurement is background limited for wavelengths >600 nm.

Fig. 4
Fig. 4

Tunable bandwidth and transmission efficiency. (a) Simulated transmission efficiency for structures with 635 nm grating period and variable number of grooves. (b) Enhancement factor as defined in the text for the same structures. All presented structures were modeled using an 800 nm cap width, a 2000 nm cavity, and a 635 nm periodicity. The 2 and 4 groove models use an h value of 45 nm, while the 20 groove model uses an h value of 20.

Fig. 5
Fig. 5

Tunable peak wavelength. measured TM transmission curves for three structures whose linear dimensions (cavity width and grating periodicity) have been scaled to shift the transmission peak. The blue curve was fabricated with a period of 450 nm and a cavity width of 2070 nm. The black curve has a period of 500 nm and a cavity width of 2300 nm, and the red curve has a grating periodicity of 575 nm and a cavity width of 2650 nm. (inset) plot of peak wavelength vs grating period showing approximate linear scalability.

Metrics