Abstract

We report the observation of room temperature lasing action in optically pumped GaN nanopillars. The nanopillars were fabricated by patterned etching and crystalline regrowth from a GaN substrate. When nanopillars were optically excited, a narrow emission peak emerged from the broad spontaneous emission background. The increasing rate is nine times faster than that of the spontaneous emission background, showing the onset of lasing action. The lasing occurs right at the center of spontaneous emission rather than the often reported redshifted wavelength. A spectroscopic ellipsometry analysis indicates that the gain of lasing action is provided by exciton transition.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
    [CrossRef]
  2. F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
    [CrossRef] [PubMed]
  3. K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
    [CrossRef]
  4. S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
    [CrossRef] [PubMed]
  5. N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
    [CrossRef] [PubMed]
  6. E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
    [CrossRef]
  7. T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17(22), 20440–20447 (2009).
    [CrossRef] [PubMed]
  8. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
    [CrossRef] [PubMed]
  9. H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
    [CrossRef]
  10. S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
    [CrossRef]
  11. S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
    [CrossRef]
  12. A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
    [CrossRef]
  13. J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
    [CrossRef]
  14. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
    [CrossRef]
  15. M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
    [CrossRef]
  16. O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
    [CrossRef]
  17. F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
    [CrossRef]
  18. S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
    [CrossRef]
  19. K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
    [CrossRef]
  20. X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
    [CrossRef]
  21. Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
    [CrossRef]
  22. W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
    [CrossRef]
  23. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
    [CrossRef] [PubMed]
  24. M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
    [CrossRef]
  25. F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
    [CrossRef]
  26. J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
    [CrossRef]
  27. J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
    [CrossRef]

2011 (1)

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

2010 (1)

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

2009 (3)

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
[CrossRef]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17(22), 20440–20447 (2009).
[CrossRef] [PubMed]

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

2007 (2)

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

2006 (2)

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
[CrossRef] [PubMed]

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

2004 (1)

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

2003 (2)

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

2002 (1)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

2000 (1)

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

1999 (2)

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

1997 (5)

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

1996 (3)

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

1954 (1)

W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Alexis, J. P.

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

Ambacher, O.

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

Aulombard, R.-L.

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

Bertness, K. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

Bidnyk, S.

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

Binet, F.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

Briot, O.

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

Calarco, R.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Calle, F.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Calleja, E.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Cao, H.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Casey, H. C.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Chang, Y. C.

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Choi, H.-J.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Davis, R. F.

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

DenBaars, S. P.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Duboz, J. Y.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

Eden, J. G.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Egawa, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Ema, K.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Figen, Z. G.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Fischer, A. J.

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Gao, J.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Gil, B.

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

Gluschenkov, O.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Gobsch, G.

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

Goldberger, J.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Goldenberg, B.

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Gradecak, S.

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Grzegory, I.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Gutowski, J.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Hangleiter, A.

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

Hardtdegen, H.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Harle, V.

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

He, R.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

Hersee, S. D.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
[CrossRef] [PubMed]

Horning, R.

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Im, J. S.

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

Inose, Y.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Ishikawa, H.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Jahn, U.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Jimbo, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Johnson, J. C.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Kaluza, N.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Kazlauskas, K.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Keller, B. P.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Kikuchi, A.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
[CrossRef]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17(22), 20440–20447 (2009).
[CrossRef] [PubMed]

Kim, F.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

Kimb, K.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Kishino, K.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

T. Kouno, K. Kishino, K. Yamano, and A. Kikuchi, “Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission,” Opt. Express 17(22), 20440–20447 (2009).
[CrossRef] [PubMed]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
[CrossRef]

Knutsen, K. P.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Köhler, K.

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

Kolbas, R. M.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Kouno, T.

Kung, P.

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

Kuykendall, T.

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Lee, J. H.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Lee, S. K.

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Lee, S.-K.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

Leszczynski, M.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Li, Y.

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Li, Y.-L.

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

Lieber, C. M.

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Little, B. D.

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

Lüth, H.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Meijers, R.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Mishra, U. K.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Montanari, S.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Moritz, A.

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

Muñoz, E.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Muth, J. F.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Myoung, J. M.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Naranjo, F. B.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Off, J.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

Ohtsuki, T.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Park, H.-G.

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Pauzauskie, P.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Perlin, P.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Ploog, K.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Prystawko, P.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Qian, F.

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

Razeghi, M.

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

Rosencher, E.

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

Roshko, A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

Sakai, M.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

Sánchez, F. J.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Sánchez-García, M.

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

Sanford, N. A.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

Saxler, A.

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

Saykally, R. J.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Schaller, R. D.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Schlager, J. B.

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

Schmidt, T. J.

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

Scholz, F.

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

Sebald, K.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Sebbah, P.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Sekiguchi, H.

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
[CrossRef]

Shan, W.

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Shim, K. H.

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

Shockley, W.

W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Shokhovets, S.

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

Smagin, I. K.

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

Soga, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Song, J. J.

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

Steuber, F.

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

Sun, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
[CrossRef] [PubMed]

Suski, T.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Tamulaitis, G.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Tchounkeu, M.

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

Thillosen, N.

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

Thomson, D. B.

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

Umeno, M.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

van Roosbroeck, W.

W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Vanneste, C.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Walker, D.

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

Wang, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Wang, X.

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
[CrossRef] [PubMed]

Watanabe, J.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Wen, C.-Y.

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Yamano, K.

Yang, P.

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Yang, P. D.

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Yu, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

Zhang, X.

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

Zhang, Y. F.

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

Žukauskas, A.

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

Appl. Phys. Lett. (10)

A. J. Fischer, W. Shan, J. J. Song, Y. C. Chang, R. Horning, and B. Goldenberg, “Temperature-dependent absorption measurements of excitons in GaN epilayers,” Appl. Phys. Lett. 71(14), 1981–1983 (1997).
[CrossRef]

J. F. Muth, J. H. Lee, I. K. Smagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. 71(18), 2572–2574 (1997).
[CrossRef]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78–4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[CrossRef]

S. Gradečak, F. Qian, Y. Li, H.-G. Park, and C. M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87(17), 173111 (2005).
[CrossRef]

O. Gluschenkov, J. M. Myoung, K. H. Shim, K. Kimb, Z. G. Figen, J. Gao, and J. G. Eden, “Stimulated emission at 300 K from photopumped GaN grown by plasma-assisted molecular beam epitaxy with an inductively coupled plasma source,” Appl. Phys. Lett. 70(7), 811–813 (1997).
[CrossRef]

S. Bidnyk, T. J. Schmidt, B. D. Little, and J. J. Song, “Near-threshold gain mechanisms in GaN thin films in the temperature range of 20–700 K,” Appl. Phys. Lett. 74(1), 1–3 (1999).
[CrossRef]

M. Sakai, Y. Inose, K. Ema, T. Ohtsuki, H. Sekiguchi, A. Kikuchi, and K. Kishino, “Random laser action in GaN nanocolumns,” Appl. Phys. Lett. 97(15), 151109 (2010).
[CrossRef]

F. Binet, J. Y. Duboz, E. Rosencher, F. Scholz, and V. Harle, “Mechanisms of recombination in GaN photodetectors,” Appl. Phys. Lett. 69(9), 1202–1204 (1996).
[CrossRef]

J. S. Im, A. Moritz, F. Steuber, V. Harle, F. Scholz, and A. Hangleiter, “Radiative carrier lifetime, momentum matrix element, and hole effective mass in GaN,” Appl. Phys. Lett. 70(5), 631 (1997).
[CrossRef]

Y. C. Chang, Y.-L. Li, D. B. Thomson, and R. F. Davis, “Phonon-assisted stimulated emission from pendeoepitaxy GaN stripes grown on 6H-SiC substrates,” Appl. Phys. Lett. 91(5), 051119 (2007).
[CrossRef]

J. Appl. Phys. (3)

J. B. Schlager, N. A. Sanford, K. A. Bertness, and A. Roshko, “Injection-level-dependent internal quantum efficiency and lasing in low-defect GaN nanowires,” J. Appl. Phys. 109(4), 044312 (2011).
[CrossRef]

X. Zhang, P. Kung, A. Saxler, D. Walker, and M. Razeghi, “Observation of room temperature surface-emitting stimulated emission from GaN:Ge by optical pumping,” J. Appl. Phys. 80(11), 6544–6546 (1996).
[CrossRef]

M. Tchounkeu, O. Briot, B. Gil, J. P. Alexis, and R.-L. Aulombard, “Optical properties of GaN epilayers on sapphire,” J. Appl. Phys. 80(9), 5352–5360 (1996).
[CrossRef]

J. Cryst. Growth (1)

K. Kishino, H. Sekiguchi, and A. Kikuchi, “Improved Ti-mask selective-area growth (SAG) by rf-plasmaassisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays,” J. Cryst. Growth 311(7), 2063–2068 (2009).
[CrossRef]

J. Phys. Chem. B (1)

H.-J. Choi, J. C. Johnson, R. He, S.-K. Lee, F. Kim, P. Pauzauskie, J. Goldberger, R. J. Saykally, and P. Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B 107(34), 8721–8725 (2003).
[CrossRef]

Nano Lett. (4)

S. D. Hersee, X. Sun, and X. Wang, “The controlled growth of GaN nanowires,” Nano Lett. 6(8), 1808–1811 (2006).
[CrossRef] [PubMed]

N. Thillosen, K. Sebald, H. Hardtdegen, R. Meijers, R. Calarco, S. Montanari, N. Kaluza, J. Gutowski, and H. Lüth, “The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements,” Nano Lett. 6(4), 704–708 (2006).
[CrossRef] [PubMed]

T. Kuykendall, P. Pauzauskie, S. K. Lee, Y. F. Zhang, J. Goldberger, and P. Yang, “Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections,” Nano Lett. 3(8), 1063–1066 (2003).
[CrossRef]

F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5(11), 2287–2291 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater. 1(2), 106–110 (2002).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

W. van Roosbroeck and W. Shockley, “Photon-radiative recombination of electrons and holes in Germanium,” Phys. Rev. 94(6), 1558–1560 (1954).
[CrossRef]

Phys. Rev. B (4)

K. Kazlauskas, G. Tamulaitis, A. Žukauskas, T. Suski, P. Perlin, M. Leszczynski, P. Prystawko, and I. Grzegory, “Stimulated emission due to spatially separated electron-hole plasma and exciton system in homoepitaxial GaN,” Phys. Rev. B 69(24), 245316 (2004).
[CrossRef]

E. Calleja, M. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, “Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy,” Phys. Rev. B 62(24), 16826–16834 (2000).
[CrossRef]

F. Binet, J. Y. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60(7), 4715–4722 (1999).
[CrossRef]

S. Shokhovets, K. Köhler, O. Ambacher, and G. Gobsch, “Observation of Fermi-edge excitons and exciton-phonon complexes in the optical response of heavily doped n-type wurtzite GaN,” Phys. Rev. B 79(4), 045201 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)-(d) Nanopillar fabricating process flow: (a) Si3N4/Ni deposition. (b) Rapid thermal annealing (RTA) to form Ni nanomasks. (c) Ni nanomask pattern transferred to Si3N4 and GaN by dry etching. (d) Crystalline regrowth to from hexagonal pillars.

Fig. 2
Fig. 2

(a) Top view of the etched nanopillars before regrowth. (b) Top view of nanopillars after regrowth, showing the m-plane {10-10} hexagonal side walls and the top inclined r-plane {1-102} facets. (c) Side view of nanopillars after regrowth.

Fig. 3
Fig. 3

(a) Spontaneous PL spectra at various pump intensities below and near threshold. (b) PL spectra at various pump intensity levels showing the onset of 363 nm excitonic lasing action. Legend: pump intensity (MW/cm2).

Fig. 4
Fig. 4

(a) The 363 nm stimulated (st.) emission intensity, linewidth, and spontaneous (sp.) emission intensity versus pump intensity. (b) The blueshift of stimulated emission wavelength with increasing pump intensity.

Fig. 5
Fig. 5

(a) Imaginary part of dielectric function from ellipsometer measurement and the spontaneous PL emission derived from the measured absorption spectrum using the detailed balance principle. (b) Spontaneous emission peak versus temperature of nanopillars.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ) = 8 π n 2 ( ν ) α ( ν ) / { h 3 c 2 [ exp ( h ν / k T ) 1 ] } ,

Metrics