Abstract

Great number of approaches has been carried out in digital holography (DH) in order to overcome the problem of coherent noise in the reconstruction process. In this paper, we describe a new method that can be used to suppress the coherent noise in phase-contrast image. The proposed method is a combination of the flat fielding method and the apodized apertures technique. The proposed method is applied to a sample of 200μm step height. The quality of the phase-contrast image of the sample is refined and the coherent noise level is reduced drastically by the order of 65%. The proposed method can also applicable to noise reduction of intensity imaging.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
    [CrossRef] [PubMed]
  2. J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
    [CrossRef]
  3. X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
    [CrossRef]
  4. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24(6), 1617–1622 (2007).
    [CrossRef] [PubMed]
  5. A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
    [CrossRef]
  6. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
    [CrossRef] [PubMed]
  7. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
    [CrossRef]
  8. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
    [CrossRef]
  9. L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
    [CrossRef]
  10. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17(7), 5473–5480 (2009).
    [CrossRef] [PubMed]
  11. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
    [CrossRef] [PubMed]
  12. U. Gopinathan, G. Pedrini, and W. Osten, “Coherence effects in digital in-line holographic microscopy,” J. Opt. Soc. Am. A 25(10), 2459–2466 (2008).
    [CrossRef] [PubMed]
  13. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [CrossRef] [PubMed]
  14. F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
    [CrossRef] [PubMed]
  15. P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
    [CrossRef]
  16. C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
    [CrossRef] [PubMed]
  17. T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1–3), 188–201 (2005).
    [CrossRef]
  18. B. Steve, Howell., “Handbook of CCD Astronomy”, Cambridge, UK, (2006).
  19. D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
    [CrossRef]
  20. D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
    [CrossRef]
  21. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  22. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  23. H. Lee, S. Kim, and D. Kim, “Two step on-axis digital holography using dual-channel Mach-Zehnder interferometer and matched filter algorithm,” J. Opt. Soc. Korea 14(4), 363–367 (2010).
    [CrossRef]
  24. D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14(4), 409–414 (2010).
    [CrossRef]
  25. E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge: Cambridge University Press, UK), pp. 459–490 (1980).
  27. V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
    [CrossRef]

2010

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
[CrossRef]

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

L. Rong, W. Xiao, F. Pan, S. Liu, and R. Li, “Speckle noise reduction in digital holography by use of multiple polarization holograms,” Chin. Opt. Lett. 8(7), 653–655 (2010).
[CrossRef]

H. Lee, S. Kim, and D. Kim, “Two step on-axis digital holography using dual-channel Mach-Zehnder interferometer and matched filter algorithm,” J. Opt. Soc. Korea 14(4), 363–367 (2010).
[CrossRef]

D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14(4), 409–414 (2010).
[CrossRef]

2009

2008

2007

2006

2005

V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
[CrossRef]

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1–3), 188–201 (2005).
[CrossRef]

2004

2002

2000

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

1999

1994

Abdelsalam, D. G.

D. G. Abdelsalam, B. J. Baek, Y. J. Cho, and D. Kim, “Surface form measurement using single-shot off-axis Fizeau interferometer,” J. Opt. Soc. Korea 14(4), 409–414 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
[CrossRef]

Baek, B. J.

Bally, G.

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

Bevilacqua, F.

Cai, X. O.

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

Callens, N.

Castro, A.

Cho, Y. J.

Cuche, E.

Depeursinge, C.

Dubois, F.

Eloker, M. M.

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
[CrossRef]

Feng, P.

Frauel, Y.

Garcia-Sucerquia, J. G.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Gopinathan, U.

Hennelly, B. M.

Hoyos, M.

Istasse, E.

Jaffery, Z. A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Javidi, B.

Jo’z’wicki, R.

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1–3), 188–201 (2005).
[CrossRef]

Jüptner, W.

Kang, X.

X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett. 6(2), 100–103 (2008).
[CrossRef]

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Kemper, B.

Kim, D.

Kim, S.

Kozacki, T.

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1–3), 188–201 (2005).
[CrossRef]

Kurowski, P.

Langehanenberg, P.

Lee, H.

Li, R.

Liu, S.

Lu, R.

Marquet, P.

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

Maximov, V. G.

V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
[CrossRef]

Maycock, J.

McDonald, J. B.

Minetti, C.

Moinuddin,

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Monnom, O.

Naughton, T. J.

Nitanai, E.

Nomura, T.

Numata, T.

Okamura, M.

Osten, W.

Pan, F.

Pedrini, G.

Prieto, D. V.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Quan, C. G.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Ramirez, J. A. H.

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

Remmersmann, C.

Requena, M. L.

Rong, L.

Schnars, U.

Shaalan, M. S.

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
[CrossRef]

Sharma, A.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Sheoran, G.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

Simonova, G. V.

V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
[CrossRef]

Stürwald, S.

Tartakovskii, V. A.

V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
[CrossRef]

Tay, C. J.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Tiziani, H. J.

von Bally, G.

Wen, X.

Xiao, W.

Yourassowsky, C.

Appl. Opt.

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33(2), 179–181 (1994).
[CrossRef] [PubMed]

T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47(19), D38–D43 (2008).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41(22), 4489–4496 (2002).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
[CrossRef] [PubMed]

F. Dubois, M. L. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43(5), 1131–1139 (2004).
[CrossRef] [PubMed]

C. Remmersmann, S. Stürwald, B. Kemper, P. Langehanenberg, and G. von Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt. 48(8), 1463–1472 (2009).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39(23), 4070–4075 (2000).
[CrossRef] [PubMed]

Chin. Opt. Lett.

J. Mod. Opt.

P. Langehanenberg, G. Bally, and B. Kemper, “Application of partially coherent light in live cell imaging with digital holographic microscopy,” J. Mod. Opt. 57(9), 709–717 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Korea

Opt. Commun.

E. Cuche, P. Marquet, and C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000).
[CrossRef]

T. Kozacki and R. Jo’z’wicki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252(1–3), 188–201 (2005).
[CrossRef]

Opt. Eng.

C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 46(11), 115801 (2007).
[CrossRef]

Opt. Express

Opt. Lasers Eng.

A. Sharma, G. Sheoran, Z. A. Jaffery, and Moinuddin, “Improvement of signal-to-noise ratio in digital holography using wavelet transform,” Opt. Lasers Eng. 46(1), 42–47 (2008).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, and M. M. Eloker, “Surface microtopography measurement of a standard flat surface by multiple-beam interference fringes at reflection,” Opt. Lasers Eng. 48(5), 543–547 (2010).
[CrossRef]

D. G. Abdelsalam, M. S. Shaalan, M. M. Eloker, and D. Kim, “Radius of curvature measurement of spherical smooth surfaces by multiple-beam interferometry in reflection,” Opt. Lasers Eng. 48(6), 643–649 (2010).
[CrossRef]

Opt. Lett.

Optik (Stuttg.)

J. G. Garcia-Sucerquia, J. A. H. Ramirez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Stuttg.) 116(1), 44–48 (2005).
[CrossRef]

X. O. Cai, “Reduction of speckle noise in the reconstructed image of digital holography,” Optik (Stuttg.) 121(4), 394–399 (2010).
[CrossRef]

Russ. Phys. J.

V. G. Maximov, G. V. Simonova, and V. A. Tartakovskii, “The effect of the Gaussian inhomogeneity of laser beam intensity on the interferometric measurement uncertainty,” Russ. Phys. J. 48(5), 495–500 (2005).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Cambridge: Cambridge University Press, UK), pp. 459–490 (1980).

B. Steve, Howell., “Handbook of CCD Astronomy”, Cambridge, UK, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Three-dimensional (3D) intensity distribution shows the effect of (a) dark frame (thermal noise), (b) influence of the non-uniformity of illumination (flat frame).

Fig. 2
Fig. 2

Uneven illumination which produces darkness at the edges of the image (a) inhomogenity of the laser beam, (b) shadow detection of the dust particles hanging at the CCD camera aperture.

Fig. 3
Fig. 3

Average of 50 off-axis interferograms of a specimen of 200 μ m step height. (a) Before correction with flat fielding. (b) After correction with flat fielding.

Fig. 4
Fig. 4

Flowchart of the algorithm that was used to analyze the off-axis interferogram (or digital hologram).

Fig. 5
Fig. 5

Transmission profile of the apodized aperture. (a) The transmission from 0 to 1 at the edge of the aperture follows a cubic spline interpolation; the dashed line indicates the transmission of the unapodized aperture. (b) Numerically reconstructed amplitude-contrast image of Fig. 3(b).

Fig. 6
Fig. 6

Schematic diagram of the optical setup based on the Mach-Zehnder interferometric configuration at reflection. O, object wave; R, reference wave; BS 1, BS 2, beam-splitters; M1, M2 mirrors.

Fig. 7
Fig. 7

Intensity variation of the laser diode used (a) Normalized mean intensity of each interferogram image against number of images. (b) Intensity variation of a mean of each successive interferograms images against number of images for original and corrected interferograms.

Fig. 8
Fig. 8

Reconstructed phase images after converting to height from the off-axis interferograms. (a) Original (before correction with the proposed method). (b) After correction with the proposed method. (c) 3D of the selected rectangle of (a). (d) 3D of the selected rectangle of (b).

Fig. 9
Fig. 9

One-dimensional (1D) surface profile along the selected line of Fig. 8(a). (a) Original against flat fielding. (b) Flat fielding against flat fielding with apodized aperture. (c) The corresponding zoomed profile inside the black rectangle in (a). (d) The corresponding zoomed profile inside the black rectangle in (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( k , l ) = | O | 2 + | R | 2 + R * O + R O * .
Ψ = R * O .
R D ( m , n ) = A R exp [ i ( 2 π / λ ) ( k x m Δ x + k y n Δ y ) ] ,
U o ( p , q ) = E o ( p , q ) . c o ( p , q ) ,
I C = [ M ( I R I B ) ] / ( I F I B ) ,
h = Φ 4 π λ .

Metrics