Abstract

We propose an optoelectronic phase-locked loop concept which enables to stabilize optical beat notes at high frequencies in the mm-wave domain. It relies on the use of a nonlinear-response Mach-Zehnder modulator. This concept is demonstrated at 100 GHz using a two-axis dual-frequency laser turned into a voltage controlled oscillator by means of an intracavity electrooptic crystal. A relative frequency stability better than 10−11 is reported. This approach of optoelectronic down conversion opens the way to the realization of continuously tunable ultra-narrow linewidth THz radiation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  2. J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter-wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  4. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [CrossRef]
  5. Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 102–109 (2011).
    [CrossRef]
  6. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, and D. Rovera, “THz photomixing synthesizer based on a fiber frequency comb,” Opt. Express 17(24), 22031–22040 (2009).
    [CrossRef] [PubMed]
  7. Q. Quraishi, M. Griebel, T. Kleine-Ostmann, and R. Bratschitsch, “Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime,” Opt. Lett. 30(23), 3231–3233 (2005).
    [CrossRef] [PubMed]
  8. G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
    [CrossRef]
  9. D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
    [CrossRef]
  10. W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
    [CrossRef]
  11. F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
    [CrossRef]
  12. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
    [CrossRef] [PubMed]
  13. A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
    [CrossRef]
  14. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
    [CrossRef]
  15. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
    [CrossRef]
  16. M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
    [CrossRef]
  17. L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 µm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conf. Lasers Electro-Opt. (CLEO), 2004, p. 2.
  18. M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
    [CrossRef]
  19. A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
    [CrossRef]
  20. A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
    [CrossRef] [PubMed]
  21. J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
    [CrossRef]
  22. M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
    [CrossRef]
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
    [CrossRef] [PubMed]
  24. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a Mach-Zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34(15), 2297–2299 (2009).
    [CrossRef] [PubMed]

2011 (2)

Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 102–109 (2011).
[CrossRef]

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

2009 (3)

2007 (5)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett. 32(11), 1515–1517 (2007).
[CrossRef] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[CrossRef]

2005 (1)

2004 (2)

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

2000 (1)

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

1999 (1)

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

1998 (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

1997 (1)

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

1996 (1)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

1995 (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
[CrossRef]

1993 (1)

J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[CrossRef]

Alouini, M.

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Bartoli, F. J.

Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 102–109 (2011).
[CrossRef]

Baxter, G. W.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

Blanc, S.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Bocquet, R.

Bondu, F.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

Bratschitsch, R.

Bretenaker, F.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Bridges, W. B.

J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[CrossRef]

Brisset, J.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Brunel, M.

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Cowle, G. J.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

Crozatier, V.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Cuisset, A.

Czarny, R.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

Davies, P. A.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
[CrossRef]

Dawes, J. M.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[CrossRef]

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

de Sandro, J. P.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

Dekker, P.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

Dolfi, D.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

Ellis, A. D.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

Fallahi, M.

Frein, L.

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

Gan, Q.

Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 102–109 (2011).
[CrossRef]

Griebel, M.

Hindle, F.

Hosako, I.

Izutsu, M.

Kawanishi, T.

Kleine-Ostmann, T.

Knowles, D. S.

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

Koch, M.

Koch, S. W.

Krakowski, M.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

Larat, C.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

Le Floch, A.

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Leonhardt, R.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

Lima, C. R.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
[CrossRef]

Loas, G.

Loh, W. H.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

Lours, M.

McKay, A.

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[CrossRef]

Merlet, T.

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Moloney, J. V.

Morohashi, I.

Mouret, G.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Oger, M.

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[CrossRef]

Poezevara, A.

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

Quraishi, Q.

Rolland, A.

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

Roskos, H. G.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

Rovera, D.

Sakamoto, T.

Samson, B. N.

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

Schaffner, J. H.

J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[CrossRef]

Scheller, M.

Siebe, F.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

Siebert, K.

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

Sotobayashi, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Vallet, M.

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini, “Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion,” Opt. Express 19(5), 4399–4404 (2011).
[CrossRef] [PubMed]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[CrossRef]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

Wake, D.

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
[CrossRef]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Yang, C.

Yarborough, J. M.

Electron. Lett. (4)

W. H. Loh, J. P. de Sandro, G. J. Cowle, B. N. Samson, and A. D. Ellis, “40 GHz optical-millimetre wave generation with a dual polarisation distributed feedback fibre laser,” Electron. Lett. 33(7), 594–595 (1997).
[CrossRef]

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency Yb3+:KGd(WO4)2 laser for continuous wave THz generation through photomixing,” Electron. Lett. 40(15), 942–943 (2004).
[CrossRef]

M. Vallet, M. Brunel, and M. Oger, “RF photonic synthesizer,” Electron. Lett. 43(25), 1437–1438 (2007).
[CrossRef]

M. Alouini, M. Vallet, M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable absolute-frequency laser at 1.5µm,” Electron. Lett. 36(21), 1780–1782 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

F. Siebe, K. Siebert, R. Leonhardt, and H. G. Roskos, “A fully tunable dual-color CW Ti:Al2O3 laser,” IEEE J. Quantum Electron. 35(11), 1731–1736 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Gan and F. J. Bartoli, “Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 17(1), 102–109 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

G. W. Baxter, J. M. Dawes, P. Dekker, and D. S. Knowles, “Dual-polarization frequency-modulated laser source,” IEEE Photon. Technol. Lett. 8(8), 1015–1017 (1996).
[CrossRef]

A. McKay and J. M. Dawes, “Tunable terahertz signals using a helicoidally polarized ceramic microchip laser,” IEEE Photon. Technol. Lett. 21(7), 480–482 (2009).
[CrossRef]

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch, “Dual tunable wavelength Er:Yb:Glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10(11), 1554–1556 (1998).
[CrossRef]

A. Rolland, L. Frein, M. Vallet, M. Brunel, F. Bondu, and T. Merlet, “40 GHz photonic synthesizer using a dual-polarization microlaser,” IEEE Photon. Technol. Lett. 22(23), 1738–1740 (2010).
[CrossRef]

M. Brunel, F. Bretenaker, S. Blanc, V. Crozatier, J. Brisset, T. Merlet, and A. Poezevara, “High-spectral purity RF beat note generated by a two-frequency solid-state laser in a dual thermooptic and electrooptic phase-locked loop,” IEEE Photon. Technol. Lett. 16(3), 870–872 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

D. Wake, C. R. Lima, and P. A. Davies, “Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser,” IEEE Trans. Microw. Theory Tech. 43(9), 2270–2276 (1995).
[CrossRef]

J. Lightwave Technol. (1)

J. H. Schaffner and W. B. Bridges, “Intermodulation distorsion in high dynamic range microwave fiber-optic links with linearized modulators,” J. Lightwave Technol. 11(1), 3–6 (1993).
[CrossRef]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (2)

J.-F. Cliche, B. Shillue, M. Têtu, and M. Poulin, “A 100-GHz-tunable photonic millimeter-wave synthesizer for the Atacama Large Millimeter Array radiotelescope,” IEEE/MTT-S International Microwave Symposium, pp.349–352, 3–8 June 2007.

L. Morvan, D. Dolfi, J.-P. Huignard, S. Blanc, M. Brunel, M. Vallet, F. Bretenaker, and A. Le Floch, “Dual-frequency laser at 1.53 µm for generating high-purity optically carried microwave signals up to 20 GHz,” in Conf. Lasers Electro-Opt. (CLEO), 2004, p. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Drawing of the two-axis dual-frequency laser, see text for details. (b) Illustration of the continuous tunability.

Fig. 2
Fig. 2

Schematic of the experimental setup. DFL, Dual-frequency laser ; EDFA, erbium doped fiber amplifier ; PD, photodiode; HVA, high voltage amplifier ; XO, quartz oscillator 10 MHz. Both inserts are the input and output of the frequency down-conversion respectively.

Fig. 3
Fig. 3

(a) Non-linear static characteristic optical transmission for a wavelength about 1540 nm. (b) Output electrical spectrum when a photodiode follows the non-linear modulator. Here only one wavelength λ 0 is modulated at f RF = 1 GHz.

Fig. 4
Fig. 4

Optical spectrum. (a) Laser output with a frequency difference about 100 GHz, resolution bandwidth 10 pm. (b) NL-MZM output. The sidebands are separated by f RF = 10 GHz, resolution bandwidth 10 pm.

Fig. 5
Fig. 5

Electrical spectrum of the intermediate frequency f i. (a) When the loop is open, resolution bandwidth 30 kHz. (b) When the loop is closed, resolution bandwidth 1 Hz, video average 10.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ ν     =     N R × f r + 2 n × f R F .

Metrics