Abstract

Blue photoluminescence (PL) from hydrogenated amorphous carbon (a-C:H) films has been successfully enhanced via surface plasmons (SPs). a-C:H films with different thickness were deposited on Ag interlayers, of which the nanostructure was tuned from nanoparticles (NPs) to continuous films via processing conditions control. The PL enhancement factor was found to increase with the Ag NP growth and the surface roughness of the continuous Ag interlayer. A PL enhancement factor of more than 9 times has been successfully achieved when the 43 nm-thick a-C:H film coupled to an Ag interlayer with the peak surface roughness. a-C:H films with SP-enhanced PL have therefore been demonstrated to be promising for light-emitting applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Y. C. Tsai, L. Qian, H. Alizadeh, and N. P. Kherani, “Room-temperature photoluminescence in erbium-doped deuterated amorphous carbon prepared by low-temperature MO-PECVD,” Opt. Express 17(23), 21098–21107 (2009).
    [CrossRef] [PubMed]
  2. S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
    [CrossRef]
  3. A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys. 80(2), 466–471 (2003).
    [CrossRef]
  4. S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
    [CrossRef]
  5. X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
    [CrossRef]
  6. S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
    [CrossRef]
  7. J. Robertson, ““Diamond-like amorphous carbon,” Mater. Sci. Eng,” R-Rep. 37, 129–281 (2002).
  8. J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
    [CrossRef]
  9. W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
    [CrossRef] [PubMed]
  10. B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
    [CrossRef]
  11. C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
    [CrossRef] [PubMed]
  12. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  13. K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1199–1209 (2009).
    [CrossRef]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [CrossRef] [PubMed]
  15. W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
    [CrossRef]
  16. D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91, 021112 (2007).
    [CrossRef]
  17. P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
    [CrossRef]
  18. J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
    [CrossRef]
  19. P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
    [CrossRef]
  20. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
    [CrossRef] [PubMed]
  21. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
    [CrossRef]
  22. F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
    [CrossRef]
  23. Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
    [CrossRef]
  24. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  25. J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010).
    [CrossRef] [PubMed]
  26. D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
    [CrossRef]
  27. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
    [CrossRef] [PubMed]
  28. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
    [CrossRef] [PubMed]
  29. X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
    [CrossRef]
  30. J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
    [CrossRef]
  31. T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
    [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solid, Academic Press Handbook Series (Academic Press, New York, 1985).
  33. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
    [CrossRef] [PubMed]
  34. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [CrossRef] [PubMed]
  35. B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009).
    [CrossRef] [PubMed]

2011 (2)

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

2010 (3)

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

J. Henson, E. Dimakis, J. DiMaria, R. Li, S. Minissale, L. Dal Negro, T. D. Moustakas, and R. Paiella, “Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays,” Opt. Express 18(20), 21322–21329 (2010).
[CrossRef] [PubMed]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

2009 (7)

K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1199–1209 (2009).
[CrossRef]

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[CrossRef] [PubMed]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

R. Y. C. Tsai, L. Qian, H. Alizadeh, and N. P. Kherani, “Room-temperature photoluminescence in erbium-doped deuterated amorphous carbon prepared by low-temperature MO-PECVD,” Opt. Express 17(23), 21098–21107 (2009).
[CrossRef] [PubMed]

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

B. M. Ross and L. P. Lee, “Comparison of near- and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34(7), 896–898 (2009).
[CrossRef] [PubMed]

2008 (6)

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[CrossRef]

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

2005 (3)

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[CrossRef] [PubMed]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

2004 (4)

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[CrossRef]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
[CrossRef] [PubMed]

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys. 80(2), 466–471 (2003).
[CrossRef]

2002 (2)

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

J. Robertson, ““Diamond-like amorphous carbon,” Mater. Sci. Eng,” R-Rep. 37, 129–281 (2002).

1996 (1)

J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
[CrossRef]

1995 (1)

F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
[CrossRef]

Aizpurua, J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Akin, O.

Alizadeh, H.

Amaratunga, G. A. J.

J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
[CrossRef]

An, J.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
[CrossRef] [PubMed]

Beck, F. J.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Bian, J. C.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Byeon, C. C.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Cai, G. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Cai, P. F.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Carey, J. D.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
[CrossRef]

Catchpole, K. R.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Chen, K. J.

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

Chen, N. F.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Chen, P. L.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Cheng, P. H.

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Cho, C. H.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Cho, C. Y.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Chumanov, G.

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[CrossRef]

Dal Negro, L.

Demichelis, F.

F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
[CrossRef]

Demir, H. V.

Dimakis, E.

DiMaria, J.

Evanoff, D. D.

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[CrossRef]

Fan, Y. M.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Fisher, M.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Foulani, A.

A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys. 80(2), 466–471 (2003).
[CrossRef]

Fule, M.

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Haglund, R. F.

Han, G. R.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

Han, S. H.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

He, H. Y.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

Henley, S. J.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
[CrossRef]

Henson, J.

Hira, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Hong, J. W.

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

Hopkins, B.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Huang, X. H.

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

Javier, A.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jennings, T.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jiang, C. Z.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Kang, J. W.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Kang, S. E.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Kawakami, Y.

K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1199–1209 (2009).
[CrossRef]

Kherani, N. P.

Kim, B. H.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Kim, J. S.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Koos, M.

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

Kwon, M. K.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Lai, C. W.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Laurent, C.

A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys. 80(2), 466–471 (2003).
[CrossRef]

Lawrie, B. J.

Lee, D. Y.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Lee, J.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Lee, L. P.

Lee, S. J.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Lei, D. Y.

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91, 021112 (2007).
[CrossRef]

Li, D. S.

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Li, J.

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[CrossRef]

Li, R.

Li, W.

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

Li, X. Q.

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

Li, Z.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

Liu, T.

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

Lo, S. Y.

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

Lu, Y. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Minissale, S.

Moustakas, T. D.

Mu, R.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Mun, J. S.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Mutlugun, E.

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Neal, T. D.

Ni, W. H.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nizamoglu, S.

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1199–1209 (2009).
[CrossRef]

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ong, H. C.

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[CrossRef]

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91, 021112 (2007).
[CrossRef]

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

Paiella, R.

Park, S. J.

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Park, T. Y.

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Peterson, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Polman, A.

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

Qian, L.

Reich, N. O.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Ren, F.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Robertson, J.

J. Robertson, ““Diamond-like amorphous carbon,” Mater. Sci. Eng,” R-Rep. 37, 129–281 (2002).

J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
[CrossRef]

Ross, B. M.

Rusli, J.

J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
[CrossRef]

Scherer, A.

T. D. Neal, K. Okamoto, and A. Scherer, “Surface plasmon enhanced emission from dye doped polymer layers,” Opt. Express 13(14), 5522–5527 (2005).
[CrossRef] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schreiter, S.

F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Silva, S. R. P.

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
[CrossRef]

Soganci, I. M.

Strouse, G. F.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Tagliaferro, A.

F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
[CrossRef]

Toth, S.

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

Tsai, R. Y. C.

Veres, M.

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

Xiao, X. H.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Xu, J.

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

Xu, J. B.

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

Xu, J. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Yang, C. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Yang, D. R.

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

Yeh, R. H.

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

Yin, Z. G.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

You, J. B.

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Yu, T. R.

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

Yuan, Z. Z.

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

Yun, C. S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Zhang, J.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

Zhang, X. W.

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Zhou, X. D.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

B. H. Kim, C. H. Cho, J. S. Mun, M. K. Kwon, T. Y. Park, J. S. Kim, C. C. Byeon, J. Lee, and S. J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

D. Y. Lei and H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91, 021112 (2007).
[CrossRef]

P. H. Cheng, D. S. Li, Z. Z. Yuan, P. L. Chen, and D. R. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett. 92(4), 041119 (2008).
[CrossRef]

J. Li and H. C. Ong, “Temperature dependence of surface plasmon mediated emission from metal-capped ZnO films,” Appl. Phys. Lett. 92(12), 121107 (2008).
[CrossRef]

S. J. Henley, J. D. Carey, and S. R. P. Silva, “Room temperature photoluminescence from nanostructured amorphous carbon,” Appl. Phys. Lett. 85(25), 6236–6238 (2004).
[CrossRef]

Diamond Related Materials (1)

S. Toth, M. Veres, M. Fule, and M. Koos, “Influence of layer thickness on the photo luminescence and Raman scattering of a-C:H prepared from benzene,” Diamond Related Materials 15(4-8), 967–971 (2006).
[CrossRef]

Epl (1)

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” Epl 93(5), 57009 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Okamoto and Y. Kawakami, “High-Efficiency InGaN/GaN Light Emitters Based on Nanophotonics and Plasmonics,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1199–1209 (2009).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

S. Y. Lo, R. H. Yeh, T. R. Yu, and J. W. Hong, “Effects of Hydrogenation on Optoelectronic Properties of a-C:H Thin-Film White-Light-Emitting Diodes With Composition-Graded Carrier-Injection Layers,” IEEE Trans. Electron. Dev. 56(1), 57–64 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

W. H. Ni, J. An, C. W. Lai, H. C. Ong, and J. B. Xu, “Emission enhancement from metallodielectric-capped ZnO films,” J. Appl. Phys. 100(2), 026103 (2006).
[CrossRef]

F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105(11), 114310 (2009).
[CrossRef]

J. Rusli, J. Robertson, and G. A. J. Amaratunga, “Photoluminescence behavior of hydrogenated amorphous carbon,” J. Appl. Phys. 80(5), 2998–3003 (1996).
[CrossRef]

P. H. Cheng, D. S. Li, X. Q. Li, T. Liu, and D. R. Yang, “Localized surface plasmon enhanced photoluminescence from ZnO films: Extraction direction and emitting layer thickness,” J. Appl. Phys. 106(6), 063120 (2009).
[CrossRef]

J. Phys. Chem. B (1)

D. D. Evanoff and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” J. Phys. Chem. B 108(37), 13957–13962 (2004).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. B. You, X. W. Zhang, Y. M. Fan, Z. G. Yin, P. F. Cai, and N. F. Chen, “Effects of the morphology of ZnO/Ag interface on the surface-plasmon-enhanced emission of ZnO films,” J. Phys. D Appl. Phys. 41(20), 205101 (2008).
[CrossRef]

Mater. Chem. Phys. (1)

A. Foulani and C. Laurent, “Wide-gap a-C:H prepared by do glow discharge of CH4: photoluminescence and electroluminescence in the visible region,” Mater. Chem. Phys. 80(2), 466–471 (2003).
[CrossRef]

Nano Lett. (2)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[CrossRef] [PubMed]

Nanotechnology (2)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[CrossRef] [PubMed]

C. Y. Cho, M. K. Kwon, S. J. Lee, S. H. Han, J. W. Kang, S. E. Kang, D. Y. Lee, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN,” Nanotechnology 21(20), 205201 (2010).
[CrossRef] [PubMed]

Nat. Mater. (2)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

W. L. Barnes, “Light-emitting devices: turning the tables on surface plasmons,” Nat. Mater. 3(9), 588–589 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Demichelis, S. Schreiter, and A. Tagliaferro, “Photoluminesence in a-C-H films,” Phys. Rev. B 51(4), 2143–2147 (1995).
[CrossRef]

Phys. Status Solidi A-Appl. Mat. (1)

Z. Li, J. Zhang, H. Y. He, J. C. Bian, X. W. Zhang, and G. R. Han, “Blue-green luminescence and SERS study of carbon-rich hydrogenated amorphous silicon carbide films with multiphase structure,” Phys. Status Solidi A-Appl. Mat. 207(11), 2543–2548 (2010).
[CrossRef]

R-Rep. (1)

J. Robertson, ““Diamond-like amorphous carbon,” Mater. Sci. Eng,” R-Rep. 37, 129–281 (2002).

Thin Solid Films (1)

X. H. Huang, J. Xu, W. Li, and K. J. Chen, “Preparation of amorphous carbon films by layer-by-layerhydrogen plasma annealing method and their luminescence properties,” Thin Solid Films 422(1-2), 130–134 (2002).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solid, Academic Press Handbook Series (Academic Press, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM images of annealed Ag interlayers with different sputtering time, (a) 10 s, (b) 20 s, (c) 30 s, (d) 40 s, (e) 60 s, (f) 140 s, (g) 280 s (h) 460 s and (i) 700 s. Measurement details for (a)-(e): Accelerating Voltage = 5 kV, Magnification = 50000, Working Distance = 7.100 mm, (f)-(i): Accelerating Voltage = 5 kV, Magnification = 20000, Working Distance = 11.700 mm.

Fig. 2
Fig. 2

The extinction spectra of C60S0-C60S700.

Fig. 3
Fig. 3

PL spectra of the naked silica substrate, the a-C:H film (C15S0), and the Ag films (S10-S700). Measurement details: 341 nm optical filter, Red PMT equipped spectrometer (Acton SP2500i).

Fig. 4
Fig. 4

(a) Smoothed PL spectra of all SP-mediated samples and the control samples. The insets show the PL images of the samples with largest PL intensity in each series. Measurement details: 341 nm optical filter, Red PMT equipped spectrometer (Acton SP2500i). (b) The integrated PL enhancement factors of all SP-mediated samples as a function of the sputtering time. The insets show the PL image of C30 taken by a conventional digital camera.

Fig. 5
Fig. 5

AFM images of annealed Ag interlayers with different sputtering time, (a) 140 s, (b) 280 s, (c) 460 s and (d) 700 s. Measurement details: lever length = 200 μm, tip length = 10 μm, scan speed = 1 Hz.

Fig. 6
Fig. 6

The wavelength-dependent PL enhancement factor spectra of all SP-mediated samples.

Fig. 7
Fig. 7

The normalized wavelength-dependent PL enhancement factors (solid lines) and extinction spectra (dash lines) of (a) C60S10, (b) C60S20, (c) C60S30 and (d) C60S60.

Tables (1)

Tables Icon

Table 1 Summary of sample labels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Z = λ / 2 π [ ( ε a-C:H ε Ag ) / ε Ag 2 ] 1 / 2

Metrics