Abstract

Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. PATH, “Cervical cancer prevention initiatives at PATH,” (PATH), http://www.rho.org/files/PATH_cxca_rep_to_world.pdf , Accessed July 1, 2010.
  2. J. Ferlay, F. Bray, P. Pisani, and D. M. Parkin, GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide (IARCPress, Lyon, 2004).
  3. A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
    [CrossRef] [PubMed]
  4. R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(2), 207–225 (2006).
    [CrossRef] [PubMed]
  5. R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
    [CrossRef] [PubMed]
  6. S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
    [CrossRef] [PubMed]
  7. M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
    [CrossRef] [PubMed]
  8. S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
    [CrossRef] [PubMed]
  9. T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
    [CrossRef] [PubMed]
  10. R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
    [CrossRef] [PubMed]
  11. L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(3), 339–354 (2006).
    [CrossRef] [PubMed]
  12. L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
    [CrossRef] [PubMed]
  13. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
    [CrossRef] [PubMed]
  14. M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
    [CrossRef] [PubMed]
  15. A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
    [CrossRef] [PubMed]
  16. J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
    [PubMed]
  17. S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
    [CrossRef] [PubMed]
  18. T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
    [CrossRef] [PubMed]
  19. R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
    [CrossRef] [PubMed]
  20. J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
    [CrossRef] [PubMed]
  21. D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
    [CrossRef] [PubMed]
  22. O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer 10(5), 349–357 (2000).
    [CrossRef] [PubMed]
  23. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
    [CrossRef] [PubMed]
  24. O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
    [CrossRef] [PubMed]
  25. A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
    [CrossRef] [PubMed]
  26. R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol. 104(2), 281–289 (2007).
    [CrossRef] [PubMed]
  27. C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
    [CrossRef]
  28. T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
    [CrossRef] [PubMed]
  29. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
    [CrossRef] [PubMed]
  30. D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
    [CrossRef] [PubMed]
  31. V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
    [CrossRef] [PubMed]
  32. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  33. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
    [CrossRef] [PubMed]
  34. V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
    [PubMed]
  35. I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
    [CrossRef] [PubMed]
  36. J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
    [CrossRef] [PubMed]
  37. R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
    [CrossRef] [PubMed]
  38. I. Georgakoudi, E. E. Sheets, C. P. Crum, M. G. Mueller, V. Backman, and M. S. Feld, “Trimodal spectroscopy as a tool for detecting cervical squamous intraepithelial lesions in vivo,” in Diagnostic Optical Spectroscopy in Biomedicine(SPIE, Munich, Germany, 2001), pp. 1–9.
  39. K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
    [CrossRef]
  40. B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
    [CrossRef] [PubMed]
  41. B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
    [CrossRef] [PubMed]
  42. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  43. D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
    [CrossRef] [PubMed]
  44. J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
    [CrossRef] [PubMed]
  45. K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).
  46. K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
    [CrossRef] [PubMed]
  47. M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007).
    [CrossRef] [PubMed]
  48. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
    [CrossRef] [PubMed]
  49. J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
    [CrossRef] [PubMed]
  50. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
    [CrossRef] [PubMed]
  51. S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water.”
  52. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
    [CrossRef] [PubMed]
  53. V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
    [CrossRef]
  54. S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express 1(2), 489–499 (2010).
    [CrossRef] [PubMed]
  55. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
    [CrossRef] [PubMed]

2011 (3)

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
[CrossRef] [PubMed]

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

2010 (4)

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express 1(2), 489–499 (2010).
[CrossRef] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

2009 (7)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

2008 (4)

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[CrossRef] [PubMed]

B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
[CrossRef] [PubMed]

C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
[CrossRef]

2007 (10)

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol. 104(2), 281–289 (2007).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007).
[CrossRef] [PubMed]

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

2006 (3)

L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(3), 339–354 (2006).
[CrossRef] [PubMed]

R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(2), 207–225 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

2005 (3)

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[CrossRef] [PubMed]

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

2004 (2)

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

2003 (2)

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
[CrossRef] [PubMed]

2002 (3)

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

2000 (5)

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer 10(5), 349–357 (2000).
[CrossRef] [PubMed]

M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
[CrossRef] [PubMed]

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

1999 (2)

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

1998 (1)

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

1997 (1)

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

A’Amar, O.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Abulafia, O.

O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer 10(5), 349–357 (2000).
[CrossRef] [PubMed]

Adewole, I.

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

Almendral, A. C.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Alvarez, R. D.

R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol. 104(2), 281–289 (2007).
[CrossRef] [PubMed]

Amorosino, M. S.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Apaja-Sarkkinen, M.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Arifler, D.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

Arrossi, S.

S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
[CrossRef] [PubMed]

Backman, V.

S. Ruderman, A. J. Gomes, V. Stoyneva, J. D. Rogers, A. J. Fought, B. D. Jovanovic, and V. Backman, “Analysis of pressure, angle and temporal effects on tissue optical properties from polarization-gated spectroscopic probe measurements,” Biomed. Opt. Express 1(2), 489–499 (2010).
[CrossRef] [PubMed]

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Badizadegan, K.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Balas, C.

C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
[CrossRef]

Bambot, S.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Barros-Dios, X. M.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Barry, W.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

Barry, W. T.

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

Basu, P.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Bean, S. M.

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Bender, J. E.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
[CrossRef] [PubMed]

Benedet, J. L.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Bentley, R. C.

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Berns, M. W.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Bigio, I. J.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Blackett, A. D.

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Blumenthal, P. D.

M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
[CrossRef] [PubMed]

Bocklage, T. J.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Böhmer, G.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Borras, J.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Bosch, F. X.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Brookner, C. K.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Brown, B. H.

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Brown, J. Q.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

Brummer, O.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Budukh, A. M.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Bullock, K. L.

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Bydlon, T.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
[CrossRef] [PubMed]

Bydlon, T. M.

Calabro, K. W.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Cantor, S. B.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Cartwright, P. S.

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Carvasan, G. A. F.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Castro, E. C.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Chakhtoura, N.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Chang, K.

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Chang, S. K.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

Chang, V.

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

Chang, V. T.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

Chang, V. T. C.

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

Chang, V. T.-C.

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

Chinoy, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Collier, T.

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[CrossRef] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Crum, C. P.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Dasari, R. R.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Dellas, A.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Deng, Y. F.

Denny, L.

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Derchain, S. F.

L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(3), 339–354 (2006).
[CrossRef] [PubMed]

Desai, S.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

DeSantis, T.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Dewhirst, M.

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

Dewhirst, M. W.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Dinshaw, K. A.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Dolo, A.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Dorin, M. H.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Dos Reis, M. A.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Drezek, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

Drezek, R. A.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Dunton, C. J.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

Faupel, M.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Feichter, G.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Ferlay, J.

R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(2), 207–225 (2006).
[CrossRef] [PubMed]

Ferris, D.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Flemming, P.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Flowers, L.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Follen, M.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Fought, A. J.

Frappart, L.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Freeberg, J. A.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Fu, H.

Fu, H. L.

B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
[CrossRef] [PubMed]

Gaffikin, L.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
[CrossRef] [PubMed]

Gallagher, J.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

Gendron-Fitzpatrick, A.

Georgakoudi, I.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Geradts, J.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

Gillenwater, A.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

Goldhaber-Fiebert, J. D.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Goldie, S. J.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Gomes, A. J.

Gordillo-Tobar, A.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Greene, H. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Gudat, F.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Guillaud, M.

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

Guimarães, J. V.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Hingmire, S.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Hollwitz, B.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Hornung, R.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Höyhtyä, M.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Jayant, K.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Jovanovic, B. D.

Jung, J. J.

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Junker, M.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

Junker, M. K.

Kane, S.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Keefe, K. A.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Keita, N.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Kelkar, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Kennedy, S.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

Kennedy, S. A.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

Keskar, V. R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Kim, H. S.

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Klein, D.

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Kothari, A.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Kuhn, L.

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Kühnle, H.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Lashgari, M.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Lee, J. S.

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Lee, M. C.

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Levin, C.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Lotan, R.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Lucas, E.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

MacAulay, C.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Mahe, C.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Mahé, C.

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Malpica, A.

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[CrossRef] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Malvi, S. G.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Marr-Lyon, L. R.

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Massad, L. S.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

Mbalawa, C. C. G.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Merisier, D.

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

Mitchell, M. F.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Moch, H.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Moore, L. K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

Moraes, N. G.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Moreno, V.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Mourant, J. R.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Müller, M. G.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Muñoz, N.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Murta, E. F.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Muwonge, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Nacoulma, M.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Nayama, M.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Nene, B. M.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Palmer, G. M.

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

Panse, N.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Papoutsoglou, G.

C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
[CrossRef]

Park, C. S.

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Park, S.-Y.

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

Parkin, D. M.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
[CrossRef] [PubMed]

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Pavlova, I.

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

Penha, D. S.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Petry, K. U.

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

Pham, T. H.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Phelps, J. E.

Pinto, G. A.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Pollack, A.

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Potirakis, A.

C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
[CrossRef]

Powers, T. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Puistola, U.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Raab, S.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Rajeshwarkar, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Ramanujam, N.

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
[CrossRef] [PubMed]

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
[CrossRef] [PubMed]

M. C. Skala, G. M. Palmer, K. M. Vrotsos, A. Gendron-Fitzpatrick, and N. Ramanujam, “Comparison of a physical model and principal component analysis for the diagnosis of epithelial neoplasias in vivo using diffuse reflectance spectroscopy,” Opt. Express 15(12), 7863–7875 (2007).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

Reif, R.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Richards, L. M.

Richards-Kortum, R.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[CrossRef] [PubMed]

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy,” Appl. Opt. 44(11), 2072–2081 (2005).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

Roblyer, D.

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

Rogers, J. D.

Ruderman, S.

Saldanha, J. C.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Salge, A. K.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Sankaranarayanan, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(2), 207–225 (2006).
[CrossRef] [PubMed]

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
[CrossRef] [PubMed]

Santana, J. O. I.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Santos, L. G.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Schottenfeld, D.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Schroeder, T.

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Schultheiss, E.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Sharma, R.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Shastri, S. S.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Sheets, E. E.

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Sherer, D. M.

O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer 10(5), 349–357 (2000).
[CrossRef] [PubMed]

Silva, B. B.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Singh, S. K.

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

Skala, M. C.

Smallwood, R. H.

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Smith, H. O.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Soler, M. E.

M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
[CrossRef] [PubMed]

Solomon, D.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

Somanathan, T.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

Spitzer, M.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

Stoyneva, V.

Tadir, Y.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Talvensaari, A.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Teixeira, V. P.

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Thekkek, N.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[CrossRef] [PubMed]

Thorat, R.

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

Tidy, J. J.

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Torhorst, J.

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

Tortolero-Luna, G.

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Tromberg, B. J.

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

Turpeenniemi, T.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Twiggs, L.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Vassallo, J.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Vieira, S. C.

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Vishwanath, K.

K. Vishwanath, K. Chang, D. Klein, Y. F. Deng, V. Chang, J. E. Phelps, and N. Ramanujam, “Portable, fiber based, diffuse reflectance spectroscopy systems for estimating tissue optical properties,” Appl. Spectrosc. 65(2), 206–215 (2011).
[CrossRef]

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

Vizcaino, A. P.

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Vrotsos, K. M.

Wainwright, H.

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Walker, D. C.

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Walmer, D.

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Waxman, A. G.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Wesley, R. S.

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

West, L. A.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Westerlund, A.

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

Wilke, L.

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

Wilke, L. G.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

Wilkinson, E.

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

Wilkinson, E. J.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

Wright, T. C.

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol. 104(2), 281–289 (2007).
[CrossRef] [PubMed]

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Yu, B.

B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
[CrossRef] [PubMed]

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express 18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett. 33(16), 1783–1785 (2008).
[CrossRef] [PubMed]

Zeferino, L. C.

L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(3), 339–354 (2006).
[CrossRef] [PubMed]

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Zsemlye, M. M.

J. R. Mourant, T. M. Powers, T. J. Bocklage, H. M. Greene, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering for the detection of cancerous and precancerous lesions of the cervix,” Appl. Opt. 48(10), D26–D35 (2009).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Am. J. Obstet. Gynecol. (3)

T. C. Wright, L. S. Massad, C. J. Dunton, M. Spitzer, E. J. Wilkinson, D. Solomon, and 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference, “2006 consensus guidelines for the management of women with cervical intraepithelial neoplasia or adenocarcinoma in situ,” Am. J. Obstet. Gynecol. 197(4), 340–345 (2007).
[CrossRef] [PubMed]

R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, “Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid,” Am. J. Obstet. Gynecol. 182(5), 1135–1139 (2000).
[CrossRef] [PubMed]

I. Georgakoudi, E. E. Sheets, M. G. Müller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186(3), 374–382 (2002).
[CrossRef] [PubMed]

Anal. Quant. Cytol. Histol. (1)

J. S. Lee, H. S. Kim, J. J. Jung, M. C. Lee, and C. S. Park, “Angiogenesis, cell proliferation and apoptosis in progression of cervical neoplasia,” Anal. Quant. Cytol. Histol. 24(2), 103–113 (2002).
[PubMed]

Ann. Diagn. Pathol. (1)

J. V. Guimarães, A. K. Salge, D. S. Penha, E. F. Murta, J. C. Saldanha, E. C. Castro, M. A. Dos Reis, and V. P. Teixeira, “Thickness of the cervical epithelium of autopsied patients with acquired immunodeficiency syndrome,” Ann. Diagn. Pathol. 11(4), 258–261 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Best Pract. Res. Clin. Obstet. Gynaecol. (2)

L. C. Zeferino and S. F. Derchain, “Cervical cancer in the developing world,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(3), 339–354 (2006).
[CrossRef] [PubMed]

R. Sankaranarayanan and J. Ferlay, “Worldwide burden of gynaecological cancer: the size of the problem,” Best Pract. Res. Clin. Obstet. Gynaecol. 20(2), 207–225 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

D. Arifler, I. Pavlova, A. Gillenwater, and R. Richards-Kortum, “Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma,” Biophys. J. 92(9), 3260–3274 (2007).
[CrossRef] [PubMed]

Breast Cancer Res. (1)

S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res. 12(6), R91 (2010).
[CrossRef] [PubMed]

Cancer (1)

L. Denny, L. Kuhn, A. Pollack, H. Wainwright, and T. C. Wright., “Evaluation of alternative methods of cervical cancer screening for resource-poor settings,” Cancer 89(4), 826–833 (2000).
[CrossRef] [PubMed]

Cancer Res. (1)

J. Q. Brown, L. G. Wilke, J. Geradts, S. A. Kennedy, G. M. Palmer, and N. Ramanujam, “Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo,” Cancer Res. 69(7), 2919–2926 (2009).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Gynecol. Oncol. (7)

A. Dellas, H. Moch, E. Schultheiss, G. Feichter, A. C. Almendral, F. Gudat, and J. Torhorst, “Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations,” Gynecol. Oncol. 67(1), 27–33 (1997).
[CrossRef] [PubMed]

O. Brummer, G. Böhmer, B. Hollwitz, P. Flemming, K. U. Petry, and H. Kühnle, “MMP-1 and MMP-2 in the cervix uteri in different steps of malignant transformation--an immunohistochemical study,” Gynecol. Oncol. 84(2), 222–227 (2002).
[CrossRef] [PubMed]

A. Talvensaari, M. Apaja-Sarkkinen, M. Höyhtyä, A. Westerlund, U. Puistola, and T. Turpeenniemi, “Matrix metalloproteinase 2 immunoreactive protein appears early in cervical epithelial dedifferentiation,” Gynecol. Oncol. 72(3), 306–311 (1999).
[CrossRef] [PubMed]

R. D. Alvarez, T. C. Wright, and Optical Detection Group, “Effective cervical neoplasia detection with a novel optical detection system: a randomized trial,” Gynecol. Oncol. 104(2), 281–289 (2007).
[CrossRef] [PubMed]

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol. 107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

D. Roblyer, S.-Y. Park, R. Richards-Kortum, I. Adewole, and M. Follen, “Objective screening for cervical cancer in developing nations: lessons from Nigeria,” Gynecol. Oncol. 107(1Suppl 1), S94–S97 (2007).
[CrossRef] [PubMed]

J. R. Mourant, T. J. Bocklage, T. M. Powers, H. M. Greene, K. L. Bullock, L. R. Marr-Lyon, M. H. Dorin, A. G. Waxman, M. M. Zsemlye, and H. O. Smith, “In vivo light scattering measurements for detection of precancerous conditions of the cervix,” Gynecol. Oncol. 105(2), 439–445 (2007).
[CrossRef] [PubMed]

Hum. Reprod. (1)

R. Hornung, T. H. Pham, K. A. Keefe, M. W. Berns, Y. Tadir, and B. J. Tromberg, “Quantitative near-infrared spectroscopy of cervical dysplasia in vivo,” Hum. Reprod. 14(11), 2908–2916 (1999).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Balas, G. Papoutsoglou, and A. Potirakis, “In vivo molecular imaging of cervical neoplasia using acetic acid as biomarker,” IEEE J. Sel. Top. Quantum Electron. 14(1), 29–42 (2008).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. T. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng. 56(4), 960–968 (2009).
[CrossRef] [PubMed]

Int. J. Cancer (2)

R. Sankaranarayanan, P. Basu, R. S. Wesley, C. Mahe, N. Keita, C. C. G. Mbalawa, R. Sharma, A. Dolo, S. S. Shastri, M. Nacoulma, M. Nayama, T. Somanathan, E. Lucas, R. Muwonge, L. Frappart, D. M. Parkin, and IARC Multicentre Study Group on Cervical Cancer Early Detection, “Accuracy of visual screening for cervical neoplasia: Results from an IARC multicentre study in India and Africa,” Int. J. Cancer 110(6), 907–913 (2004).
[CrossRef] [PubMed]

A. P. Vizcaino, V. Moreno, F. X. Bosch, N. Muñoz, X. M. Barros-Dios, J. Borras, and D. M. Parkin, “International trends in incidence of cervical cancer: II. squamous-cell carcinoma,” Int. J. Cancer 86(3), 429–435 (2000).
[CrossRef] [PubMed]

Int. J. Gynecol. Cancer (1)

O. Abulafia and D. M. Sherer, “Angiogenesis in the uterine cervix,” Int. J. Gynecol. Cancer 10(5), 349–357 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

V. T.-C. Chang, S. M. Bean, P. S. Cartwright, and N. Ramanujam, “Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix,” J. Biomed. Opt. 15(5), 057006–057009 (2010).
[CrossRef] [PubMed]

T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, “Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer,” J. Biomed. Opt. 12(2), 024021–024027 (2007).
[CrossRef] [PubMed]

B. Yu, H. L. Fu, and N. Ramanujam, “Instrument independent diffuse reflectance spectroscopy,” J. Biomed. Opt. 16(1), 011010 (2011).
[CrossRef] [PubMed]

K. Vishwanath, D. Klein, K. Chang, T. Schroeder, M. W. Dewhirst, and N. Ramanujam, “Quantitative optical spectroscopy can identify long-term local tumor control in irradiated murine head and neck xenografts,” J. Biomed. Opt. 14(5), 054051 (2009).
[CrossRef] [PubMed]

R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502–010503 (2008).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt. 9(3), 511–522 (2004).
[CrossRef] [PubMed]

J. Low. Genit. Tract Dis. (1)

T. DeSantis, N. Chakhtoura, L. Twiggs, D. Ferris, M. Lashgari, L. Flowers, M. Faupel, S. Bambot, S. Raab, and E. Wilkinson, “Spectroscopic imaging as a triage test for cervical disease: a prospective multicenter clinical trial,” J. Low. Genit. Tract Dis. 11(1), 18–24 (2007).
[CrossRef] [PubMed]

N. Engl. J. Med. (2)

R. Sankaranarayanan, B. M. Nene, S. S. Shastri, K. Jayant, R. Muwonge, A. M. Budukh, S. Hingmire, S. G. Malvi, R. Thorat, A. Kothari, R. Chinoy, R. Kelkar, S. Kane, S. Desai, V. R. Keskar, R. Rajeshwarkar, N. Panse, and K. A. Dinshaw, “HPV screening for cervical cancer in rural India,” N. Engl. J. Med. 360(14), 1385–1394 (2009).
[CrossRef] [PubMed]

S. J. Goldie, L. Gaffikin, J. D. Goldhaber-Fiebert, A. Gordillo-Tobar, C. Levin, C. Mahé, T. C. Wright, and Alliance for Cervical Cancer Prevention Cost Working Group, “Cost-effectiveness of cervical-cancer screening in five developing countries,” N. Engl. J. Med. 353(20), 2158–2168 (2005).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8(9), 725–731 (2008).
[CrossRef] [PubMed]

Neoplasia (2)

V. T. C. Chang, P. S. Cartwright, S. M. Bean, G. M. Palmer, R. C. Bentley, and N. Ramanujam, “Quantitative physiology of the precancerous cervix in vivo through optical spectroscopy,” Neoplasia 11(4), 325–332 (2009).
[PubMed]

K. Vishwanath, W. T. Barry, M. Dewhirst, and N. Ramanujam, “Using optical spectroscopy to longitudinally monitor physiological changes within solide tumors,” Neoplasia 11(9), 899–900 (2009).

Obstet. Gynecol. (1)

M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna, S. B. Cantor, and R. Richards-Kortum, “Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis,” Obstet. Gynecol. 91(4), 626–631 (1998).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Pathol. Res. Pract. (1)

S. C. Vieira, B. B. Silva, G. A. Pinto, J. Vassallo, N. G. Moraes, J. O. I. Santana, L. G. Santos, G. A. F. Carvasan, and L. C. Zeferino, “CD34 as a marker for evaluating angiogenesis in cervical cancer,” Pathol. Res. Pract. 201(4), 313–318 (2005).
[CrossRef] [PubMed]

Physiol. Meas. (1)

D. C. Walker, B. H. Brown, A. D. Blackett, J. J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas. 24(1), 121–135 (2003).
[CrossRef] [PubMed]

Prim. Care Update Ob Gyns (1)

M. E. Soler, L. Gaffikin, and P. D. Blumenthal, “Cervical cancer screening in developing countries,” Prim. Care Update Ob Gyns 7(3), 118–123 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. Chang, D. Merisier, B. Yu, D. Walmer, and N. Ramanujam, “Calibration schemes of a field-compatible optical spectroscopic system to quantify neovascular changes in the dysplastic cervix,” Proc. SPIE 7891, 78910A (2011).
[CrossRef]

Salud Publica Mex. (1)

S. Arrossi, R. Sankaranarayanan, and D. M. Parkin, “Incidence and mortality of cervical cancer in Latin America,” Salud Publica Mex. 45(Suppl 3), S306–S314 (2003).
[CrossRef] [PubMed]

Other (4)

PATH, “Cervical cancer prevention initiatives at PATH,” (PATH), http://www.rho.org/files/PATH_cxca_rep_to_world.pdf , Accessed July 1, 2010.

J. Ferlay, F. Bray, P. Pisani, and D. M. Parkin, GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide (IARCPress, Lyon, 2004).

I. Georgakoudi, E. E. Sheets, C. P. Crum, M. G. Mueller, V. Backman, and M. S. Feld, “Trimodal spectroscopy as a tool for detecting cervical squamous intraepithelial lesions in vivo,” in Diagnostic Optical Spectroscopy in Biomedicine(SPIE, Munich, Germany, 2001), pp. 1–9.

S. Prahl, “Tabulated Molar Extinction Coefficient for Hemoglobin in Water.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The portable spectroscopic system consists of an ultrabright white LED module, a spectrometer for tissue sensing, a spectrometer for self-calibration, and a fiber optic probe to deliver and collect diffuse reflectance from 450 – 600 nm from the cervix in vivo. All fibers are 200/220 µm in core/cladding diameter with a numerical aperture (NA) of 0.22. (b) The distal end in contact with tissue consists of a central collection fiber encircled by a ring of 6 illumination fibers with a center-to-center separation of 622 µm. (c) Light delivered to Spectralon® coating and collected via self-calibration collection fiber is used to account for drifts in system throughput in real time [41].

Fig. 2
Fig. 2

Extracted vs. expected [total Hb] when (a) target and reference phantoms are from the same experiment (or day) and (b) target and reference phantoms are from different experiments (or days). Extracted vs. expected <μs’> when (c) target and reference phantoms are from the same experiment (or day) and (d) target and reference phantoms are from different experiments (or days). Either calibration method yielded similar extraction errors for [total Hb] and <μs’> when same-day reference phantom is used. Extraction error for [total Hb] was similar even when a different-day reference phantom was used. However, extraction error was substantially higher for <μs’> when puck-calibration was used in lieu of self-calibration.

Fig. 3
Fig. 3

Representative (a) diffuse reflectance, (b) extracted μa(λ), and (c) μs’(λ) from a colposcopically normal site in which the puck-calibrated reflectance ratio was less than one and both calibration methods led to a good fit. Although the extracted μa(λ) are identical, puck-calibration led to extraction of higher μs’(λ) than those using self-calibration. Representative (d) diffuse reflectance, (e) extracted μa(λ), and (f) μs’(λ) from a colposcopically normal site in which the puck-calibrated spectra exceeded one and led to poor fitting and the extraction of optical properties that reached boundary constraints in the least squares search algorithm. PC: puck-calibrated and SC: self-calibrated. Red asterisks and blue diamonds represent measured diffuse reflectance that has been calibrated using the puck and self-calibration measurement, respectively. Solid lines indicate best fits using puck calibrated spectra and broken lines indicate self-calibrated spectra. Error bars indicate standard deviations from three repeated scans.

Fig. 4
Fig. 4

(a) Total hemoglobin content ([total Hb]) extracted from colposcopically normal sites in patients. The extracted [total Hb] was not significantly associated with the calibration method used (P = 0.86). (b) Hemoglobin saturation (HbSat) extracted from the same colposcopically normal sites. Extracted HbSat was also not significantly associated with the calibration method used (P = 0.15). (c) The extracted wavelength-averaged reduced scattering coefficient (<µs’>) from same colposcopically normal sites. <µs’> was significantly associated with the calibration method used (*P < 0.03). The number of sites differed between two calibration methods as fits that resulted in zero absorption were discarded. Box and whisker plots of mean % error in extracting (d) [total Hb] and (e) <μs’> from all phantoms (Days 1&2) using puck calibration and self-calibration. Asterisks indicate significance at P < 0.05 using a two-sided Student’s t-test.

Fig. 5
Fig. 5

(a) Representative diffuse reflectance (450 – 600 nm) from a colposcopically normal site calibrated using self-calibration channel at low (red asterisks, color online), medium (blue diamonds), and high (black triangles) contact pressures. Error bars indicate standard deviation between three repeated scans at each pressure. Dashed lines are best least squares fits (100 fits) to the mean of the measured diffuse reflectance using the Monte Carlo-based inverse model using self-calibration. Diffuse reflectance increases as the applied contact pressure increases. (b) Extracted absorption spectrum (µa(λ)) from the same colposcopically normal site at low (red broken line), medium (blue dashed line), and high (black solid line) pressures. [Total Hb] at different pressures varied over 11.5 μM (103% of value at medium pressure). (c) Extracted reduced scattering spectra (µs’(λ)) from the same colposcopically normal site at low (red broken line), medium (blue dashed line), and high (black solid line) pressures. Extracted <μs’> at different pressures varied over 3 cm−1, or 30% of the value extracted at medium pressure.

Fig. 6
Fig. 6

To account for inter-site variations, extracted (a) [total Hb], (b) HbSat, and (c) <µs’> at medium and high pressures were subtracted from those extracted at low pressure. Significant differences in extracted optical properties were observed in Δ[total Hb] (medium and high versus low pressures with P < 0.02 and 0.01, respectively) and <µs’> (medium and high versus low pressure with P < 0.04 and 0.002, respectively) over 450-600 nm. Dashed lines represent no change from values extracted using diffuse reflectance obtained at low applied probe contact pressure. Asterisks indicate statistical significance with P < 0.05 using a two-sided Student’s t-test.

Tables (4)

Tables Icon

Table 1 Sensitivity and Specificities of Current Screening and Diagnostic Methods

Tables Icon

Table 2 Optical Properties (450 – 600 nm) for Titrate Absorber Phantom Experiment (Exp/Day 1)

Tables Icon

Table 3 Optical Properties (450 – 600 nm) for Titrate Scatterer Phantom Experiment (Exp/Day 2)

Tables Icon

Table 4 Errors in Extraction of Phantom [total Hb] and <μs’> in the Wavelength Range of 450 – 600 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S N R ( λ ) = 20 log 10 M e a n R ( λ ) S t d R ( λ )

Metrics