Abstract

We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd3+:YCa4O(BO3)3 borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).
  2. P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
  3. M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
    [CrossRef]
  4. N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
    [CrossRef] [PubMed]
  5. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
    [CrossRef] [PubMed]
  6. M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
    [CrossRef] [PubMed]
  7. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
    [CrossRef]
  8. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  9. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
    [CrossRef] [PubMed]
  10. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
    [CrossRef] [PubMed]
  11. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
    [CrossRef] [PubMed]
  12. A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
    [CrossRef] [PubMed]
  13. J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
    [CrossRef]
  14. T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
    [CrossRef]
  15. J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
    [CrossRef]
  16. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
    [CrossRef]
  17. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
    [CrossRef]
  18. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
    [CrossRef]
  19. A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17(12), 10076–10081 (2009).
    [CrossRef] [PubMed]
  20. A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
    [CrossRef] [PubMed]
  21. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [CrossRef]
  22. S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
    [CrossRef]
  23. W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
    [CrossRef] [PubMed]
  24. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  25. N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
    [CrossRef]
  26. N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
    [CrossRef] [PubMed]
  27. S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
    [CrossRef]
  28. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
    [CrossRef]
  29. R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
    [CrossRef]
  30. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
    [CrossRef] [PubMed]
  31. S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
    [CrossRef]
  32. L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
    [CrossRef]
  33. A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
    [CrossRef]
  34. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
    [CrossRef] [PubMed]
  35. Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
    [CrossRef]
  36. J. M. Senior, Optical Fiber Communications (Pearson Education Limited, 2009).
  37. V. Krishnakumar and R. Nagalakshmi, “Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(12), 2733–2739 (2004).
    [CrossRef] [PubMed]
  38. A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
    [CrossRef]
  39. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
    [CrossRef] [PubMed]
  40. M. Abarkan, J. P. Salvestrini, D. Pelenc, and M. Fontana, “Electro-optic, thermo-optic, and dielectric properties of YCOB and Nd:YCOB crystals: comparative study,” J. Opt. Soc. Am. B 22(2), 398–406 (2005).
    [CrossRef]

2011 (4)

2010 (6)

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

2009 (6)

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17(12), 10076–10081 (2009).
[CrossRef] [PubMed]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

2008 (3)

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

2007 (4)

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

2006 (3)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

2005 (3)

2004 (2)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

V. Krishnakumar and R. Nagalakshmi, “Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(12), 2733–2739 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

2000 (1)

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

1997 (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

1996 (1)

1991 (1)

1974 (1)

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Abarkan, M.

Aitchison, J. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Ams, M.

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Beecher, S. J.

Bellini, N.

Benayas, A.

Birks, T. A.

Bland-Hawthorn, J.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Bookey, H. T.

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

Bortz, M. L.

Bourson, P.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Bragheri, F.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Cantelar, E.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Chen, F.

Chen, K. P.

Chen, W.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Chiodo, N.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Cristiani, I.

Davis, K. M.

Dekker, P.

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Dong, N.

N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[CrossRef] [PubMed]

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

Eaton, S. M.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Ebendorff-Heidepriem, H.

Fejer, M. M.

Ferrara, L.

Fontana, M.

Fontana, M. D.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Fuerbach, A.

Gattass, R. R.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Glatzel, U.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

Gorelik, T.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

Gross, S.

Gu, M.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

Helmy, A. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Herman, P. R.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Hibino, Y.

Hirao, K.

Hnatovsky, C.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Hu, J.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[CrossRef]

Huang, Z.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Iyer, R.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Jacinto, C.

Jaque, D.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17(12), 10076–10081 (2009).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

Jaque, F.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Jiang, M.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Kaminskii, A. A.

Kar, A. K.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Kern, P.

Khrushchev, I.

Kohtoku, M.

Kraemer, D.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Krishnakumar, V.

V. Krishnakumar and R. Nagalakshmi, “Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(12), 2733–2739 (2004).
[CrossRef] [PubMed]

Kuan, K.

Lamela, J.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Lancaster, D. G.

Laporta, P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Leon-Saval, S. G.

Li, E.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Liao, Y.

Lifante, G.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Lin, G.

Liu, W.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Liu, Y.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Lobino, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Lu, F.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Lu, J.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Lu, Q.

Luo, F.

Macdonald, J. R.

Malovichko, G.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Marangoni, M.

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Marshall, G. D.

Martinez de Mendivil, J.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

Matthews, J. C. F.

Maxwell, I.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Mazur, E.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

McMillen, B.

Menyuk, C. R.

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[CrossRef]

Merchant, C. A.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Miller, R. J. D.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Minzioni, P.

Mitchell, J.

Miura, K.

Monro, T. M.

Nagalakshmi, R.

V. Krishnakumar and R. Nagalakshmi, “Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(12), 2733–2739 (2004).
[CrossRef] [PubMed]

Nasu, Y.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

O’Brien, J. L.

Okhrimchuk, A. G.

Osellame, R.

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Pelenc, D.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Politi, A.

Pollnau, M.

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Psaila, N. D.

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

Qian, B.

Qiu, J.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Ramponi, R.

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Ridah, A.

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Rodenas, A.

Ródenas, A.

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

Romanyuk, Y. E.

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[CrossRef]

Romero, C.

Roso, L.

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Salathe, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

Salvestrini, J. P.

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Shao, Z.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Shestakov, A. V.

Shi, Q.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Silva, W. F.

Song, J.

Sugimoto, N.

Sun, H.

Tan, Y.

Taylor, R. S.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Thomson, R. R.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

Tong, L.

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Torchia, G. A.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

Tuennermann, A.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

Vazquez de Aldana, J.

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

Vazquez de Aldana, J. R.

Vázquez de Aldana, J.

Vázquez de Aldana, J. R.

Vishnubhatla, K. C.

Wang, J.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Wang, Z.

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Will, M.

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

Withford, M. J.

Xu, J.

Xu, Z.

Yao, J.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Zhang, H.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Zhang, L.

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

Zhang, S.

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

Zhao, Q.

Zhou, G.

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

Zhu, B.

Zilkie, A. J.

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

Adv. Opt. Photonics (1)

J. Hu and C. R. Menyuk, “Understanding leaky modes: slab waveguide revisited,” Adv. Opt. Photonics 1(1), 58–106 (2009).
[CrossRef]

Appl. Phys. B (2)

A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B 95(1), 85–96 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

S. M. Eaton, C. A. Merchant, R. Iyer, A. J. Zilkie, A. S. Helmy, J. S. Aitchison, P. R. Herman, D. Kraemer, R. J. D. Miller, C. Hnatovsky, and R. S. Taylor, “Raman gain from waveguides inscribed in KGd(WO4)2 by high repetition rate femtosecond laser,” Appl. Phys. Lett. 92(8), 081105 (2008).
[CrossRef]

N. Dong, J. Martinez de Mendivil, E. Cantelar, G. Lifante, J. Vazquez de Aldana, G. A. Torchia, F. Chen, and D. Jaque, “Self-frequency-doubling of ultrafast laser inscribed neodymium doped yttrium aluminum borate waveguides,” Appl. Phys. Lett. 98(18), 181103 (2011).
[CrossRef]

S. Zhang, J. Yao, Q. Shi, Y. Liu, W. Liu, Z. Huang, F. Lu, and E. Li, “Fabrication and characterization of periodically poled lithium niobate waveguide using femtosecond laser pulses,” Appl. Phys. Lett. 92(23), 231106 (2008).
[CrossRef]

R. Osellame, M. Lobino, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. T. Bookey, R. R. Thomson, N. D. Psaila, and A. K. Kar, “Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient,” Appl. Phys. Lett. 90(24), 241107 (2007).
[CrossRef]

A. Ródenas, G. Zhou, D. Jaque, and M. Gu, “Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics,” Appl. Phys. Lett. 93(15), 151104 (2008).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88(11), 111109 (2006).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85(7), 1122–1124 (2004).
[CrossRef]

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett. 25(8), 458–460 (1974).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

T. Gorelik, M. Will, S. Nolte, A. Tuennermann, and U. Glatzel, “Transmission electron microscopy studies of femtosecond laser induced modifications in quartz,” Appl. Phys., A Mater. Sci. Process. 76(3), 309–311 (2003).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tunnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process. 89(1), 127–132 (2007).
[CrossRef]

C. R. Phys. (1)

M. Pollnau and Y. E. Romanyuk, “Optical waveguides in laser crystals,” C. R. Phys. 8(2), 123–137 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. M. Eaton, W. Chen, L. Zhang, H. Zhang, R. Iyer, J. S. Aitchison, and P. R. Herman, “Telecom-band directional coupler written with femtosecond fiber laser,” IEEE Photon. Technol. Lett. 18(20), 2174–2176 (2006).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in z-cut lithium niobate,” IEEE Photon. Technol. Lett. 19(12), 892–894 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

A. Ridah, P. Bourson, M. D. Fontana, and G. Malovichko, “The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3,” J. Phys. Condens. Matter 9(44), 9687–9693 (1997).
[CrossRef]

Opt. Commun. (1)

L. Tong, R. R. Gattass, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond laser written waveguides in glass,” Opt. Commun. 259(2), 626–630 (2006).
[CrossRef]

Opt. Express (7)

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

A. Benayas, D. Jaque, B. McMillen, and K. P. Chen, “High repetition rate UV ultrafast laser inscription of buried channel waveguides in sapphire: fabrication and fluorescence imaging via ruby R lines,” Opt. Express 17(12), 10076–10081 (2009).
[CrossRef] [PubMed]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17(15), 12546–12554 (2009).
[CrossRef] [PubMed]

N. Bellini, K. C. Vishnubhatla, F. Bragheri, L. Ferrara, P. Minzioni, R. Ramponi, I. Cristiani, and R. Osellame, “Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells,” Opt. Express 18(5), 4679–4688 (2010).
[CrossRef] [PubMed]

F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Sun, B. Zhu, J. Qiu, Q. Zhao, and Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19(6), 5698–5705 (2011).
[CrossRef] [PubMed]

Opt. Lett. (9)

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36(9), 1587–1589 (2011).
[CrossRef] [PubMed]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35(23), 4036–4038 (2010).
[CrossRef] [PubMed]

N. Dong, Y. Tan, A. Benayas, J. Vázquez de Aldana, D. Jaque, C. Romero, F. Chen, and Q. Lu, “Femtosecond laser writing of multifunctional optical waveguides in a Nd:YVO4 + KTP hybrid system,” Opt. Lett. 36(6), 975–977 (2011).
[CrossRef] [PubMed]

W. F. Silva, C. Jacinto, A. Benayas, J. R. Vazquez de Aldana, G. A. Torchia, F. Chen, Y. Tan, and D. Jaque, “Femtosecond-laser-written, stress-induced Nd:YVO4 waveguides preserving fluorescence and Raman gain,” Opt. Lett. 35(7), 916–918 (2010).
[CrossRef] [PubMed]

A. Benayas, W. F. Silva, C. Jacinto, E. Cantelar, J. Lamela, F. Jaque, J. R. Vázquez de Aldana, G. A. Torchia, L. Roso, A. A. Kaminskii, and D. Jaque, “Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments,” Opt. Lett. 35(3), 330–332 (2010).
[CrossRef] [PubMed]

M. L. Bortz and M. M. Fejer, “Annealed proton-exchanged LiNbO3 waveguides,” Opt. Lett. 16(23), 1844–1846 (1991).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30(7), 723–725 (2005).
[CrossRef] [PubMed]

A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett. 30(17), 2248–2250 (2005).
[CrossRef] [PubMed]

Prog. Cryst. Growth Charact. Mater. (1)

Z. Shao, J. Lu, Z. Wang, J. Wang, and M. Jiang, “Anisotropic properties of Nd:ReCOB (Re=Y,Gd): a low symmetry self-frequency doubling crystal,” Prog. Cryst. Growth Charact. Mater. 40(1–4), 63–73 (2000).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

V. Krishnakumar and R. Nagalakshmi, “Polarised infrared and Raman studies of YCa4O(BO3)3 a non-linear optical single crystal,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(12), 2733–2739 (2004).
[CrossRef] [PubMed]

Other (3)

J. M. Senior, Optical Fiber Communications (Pearson Education Limited, 2009).

G. Lifante, Integrated Photonics: Fundamentals (Wiley, 2003).

P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fabrication schemes studied in this work: Laser focusing is always performed along the positioning stage vertical z-axis. Waveguide light propagation is along the horizontal y-axis. A low NA focusing lens is used to fabricate square cross-section waveguides. Multiple scans are performed along the y-axis and overlap along the x-axis to build up a homogenous step-index core profile. A high NA lens is also used to fabricate waveguides with smaller cross-section sizes and closely-packed 2D arrays.

Fig. 2
Fig. 2

Scheme of laser fabrication parameters studied and resulting waveguides when using a 0.6NA focusing lens, 200 KHz and 350 fs pulse duration. (a) Single scans where studied inscribing 2 parallel lines for 12 different energies. Speed was fixed at 1.7 cms−1. (b) Multiscan waveguide study, performed with an increased speed of 6 cms−1 and different combinations of pulse energy and scan overlaps. Pulses arrive from the top of the images.

Fig. 3
Fig. 3

Optical near-IR characterization of the MW4 waveguide. (a) Visible light transmission image obtained with an oil-immersion 100X 1.4NA UPlanSApo Olympus microscope objective. From this image the estimated waveguide size is of 7.4 µm x 9.6 μm. (b) Horizontal intensity cross-sections of the near-field profiles of fundamental modes at 1.94 μm and 3.39 μm wavelengths. Both measured and calculated modes are shown. (c) and (d) Measured near-field images of single-modes. The waveguide core is also shown. (e) and (f) Corresponding calculated modes and waveguide core.

Fig. 4
Fig. 4

(a) Microscope image of the two-dimensional hexagonal array of single scans waveguides fabricated with 1.2 ps pulses, slow speeds of 0.1 mms−1, high NA1.4 and 1.1 µJ pulse energy. Laser writing was performed from the top of the image. (b) C-band 1.55 µm wavelength near field image of the guided modes. Mode intensity color scale is the same as in Fig. 3. Guiding was only observed to occur for vertical polarization, and almost no stress-induced guiding could be observed inside or outside the hexagonal array.

Fig. 5
Fig. 5

Normalized Raman spectra inside the waveguide MW4, and at a non-irradiated point, showing the most active 938 cm−1 and 950 cm−1 phonon modes, and the defect mode associated with refractive index increased zones.

Fig. 6
Fig. 6

Micro-Raman analysis of multiscan structures MS3 and MS1, as shown in Fig. 2. Each structure is composed of 4 segments of equal horizontal size but different scan separations of 0.42/0.64/0.85/1.06 µm, from left to right. (a, b) Microscope images of the structures. (c, d) Normalized integrated area of lattice defects band at around 920 cm−1 (see Fig. 5(b)). (e, f) 2D mapping of the 950.83 cm−1 phonon mode energy. (g, h) 2D mapping of the phonon mode FWHM. All color scales are normalized to min. and max. values, respectively and are indicated in cm−1 units. (i.e. Note that the max. shift values for the MS1 are approximately a half of those for the MS3).

Fig. 7
Fig. 7

Detailed analysis of the Raman energy-shifts of the 950.83 cm−1 phonon mode in structures MS1 and MS3. (a) Centered horizontal cross sections showing the different dependences of the phonon mode energy on the combined values of pulse energy and laser scan separation. (b) Raman shift as a function of laser scan separations. A 3 fold increase in the energy shift is observed when the pulse energy is increased by 0.12 µJ, reaching a maximum of +1.92 cm−1. A sudden decrease is observed for scan separations lower than 0.6 µm and for the higher energy of 0.79 µJ, indicating saturation and annealing of lattice defects.

Fig. 8
Fig. 8

Measured µ-luminescence spectra of the 4F3/2-4I9/2 neodymium ions emission band from bulk crystal (blue), and from the center of the waveguide core (red).

Tables (1)

Tables Icon

Table 1 Summary of the MS4 waveguide parameters. Unshaded, experimental data; grey shaded, estimated data.

Metrics