Abstract

We experimentally demonstrate coupled-resonator-induced-transparency (CRIT) phenomenon in ring-bus-ring (RBR) geometry synergistically integrated with Mach-Zehnder interferometer (MZI). The RBR consists of two detuned resonators indirectly coupled through a center bus waveguide. The transparency is obtained by increasing the light intercavity interaction through tailoring the RBR phase response while ensuring balanced MZI operation. In this work, a CRIT resonance with a quality factor of ~18,000 is demonstrated with cavity size detuning of ~0.035% and power coupling of ~60%, which are in good agreement with the theory.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [CrossRef]
  2. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [CrossRef] [PubMed]
  3. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
    [CrossRef]
  4. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [CrossRef] [PubMed]
  5. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [CrossRef] [PubMed]
  6. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011).
    [CrossRef]
  7. http://www.epixfab.eu .
  8. S. Darmawan, L. Y. Tobing, and T. Mei, “Coupling-induced phase shift in a microring-coupled Mach-Zehnder interferometer,” Opt. Lett. 35(2), 238–240 (2010).
    [CrossRef] [PubMed]
  9. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [CrossRef]
  10. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011), http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-4-3251 .
    [CrossRef] [PubMed]

2011 (2)

2010 (2)

S. Darmawan, L. Y. Tobing, and T. Mei, “Coupling-induced phase shift in a microring-coupled Mach-Zehnder interferometer,” Opt. Lett. 35(2), 238–240 (2010).
[CrossRef] [PubMed]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

2005 (1)

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

2004 (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

2001 (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Bozhevolnyi, S. I.

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Darmawan, S.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Farca, G.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Han, Z.

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Mei, T.

Naweed, A.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Rosenberger, A. T.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Shopova, S. I.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Tobing, L. Y.

Tobing, L. Y. M.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Zhang, D. H.

Zhang, Y.

IEEE J. Sel. Top. Quantum Electron. (1)

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon-nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering gallery microresonators,” Phys. Rev. A 71(4), 043804 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Other (1)

http://www.epixfab.eu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The proposal of using RBRMZI to excite CRIT spectrum. (b) The fabricated RBRMZI devices on silicon-on-insulator platform: DUT 01 to 06. The RBR racetrack coupler length is 6μm with the first ring radius of 5μm. The second ring radius is varied from 5.35, 5 and 4.65μm to excite different cavity detuning of γ~1.05, 1, and 0.95, respectively. The DUT 01 to 03 have no passivation layer (air cladding) whereas the DUT 04 to 06 are coated with i-line resist.

Fig. 2
Fig. 2

The measured (bold black) and the fitted (dashed red) RBRMZI transmission: (a) DUT 01 to 03 (bare silicon) and (b) DUT 04 to 06 (i-line resist coating). The measurement is based on transverse electric (TE) polarization.

Fig. 3
Fig. 3

The demonstrated Q-factors of RBRMZI devices as a function of the operating wavelength, which also indicates the location of the CRIT resonances.

Fig. 4
Fig. 4

(a) The contour plot showing the finesse [log10(F)] (solid) and the background envelope linewidth Δδ1/2/(2π) outside transparency band (dashed) as a function of r 1,2 and cavity size detuning Δ γ DEV = ( γ 1.05 1 ) × 100 % . (b) The RBRMZI transmission (upper) and RBR phase (lower) for r 0 = ± 0.75 (A,C) and 0 (B), assuming lossless case and balanced MZI.

Tables (1)

Tables Icon

Table 1 The Device under Test (DUT) and the Fitting Parameters*

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t RBR | t RBR | ϕ RBR = r 0 r 2 A 1 r 1 A 2 + A 1 A 2 1 r 1 A 1 r 2 A 2 r 0 A 1 A 2 ,     B 1 , 2 = | i t 1 , 2 ( 1 A 2 , 1 ) A 1 , 2 1 r 1 A 1 r 2 A 2 r 0 A 1 A 2 | 2 ,
T MZI | t MZI | 2 = cos [ φ RBR φ B 2 ] ,       φ MZI | φ B = 0 = φ RBR + π 2 + arg [ cos ( φ RBR 2 ) ]

Metrics