Abstract

The structural changes inside rock-salt crystals after femtosecond (fs) laser irradiation are investigated using a microscopic pump-probe technique and an elastic simulation. The pump-probe imaging shows that a squircle-shaped stress wave is generated after the fs laser irradiation as a result of the relaxation of thermal stress in the photoexcited region. Pump-probe crossed-Nicols imaging and elastic simulation elucidate that shear stresses and tensile stresses are concentrated in specific regions during the propagation of the stress wave. The shear stresses and tensile stresses observed in this study can explain the characteristic laser-induced structural changes inside rock-salt crystals.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
    [CrossRef]
  2. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics (John Wiley & Sons, Inc. 1976), Chaps. 4 and 14.
  3. J. P. Hirth and J. Lothe, Theory of dislocation (John Wiley & Sons, 1982).
  4. J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
    [CrossRef]
  5. G. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. Roy. Soc. A 145(855), 362–387 (1934).
    [CrossRef]
  6. J. S. Koehler, “On the dislocation theory of plastic deformation,” Phys. Rev. 60(5), 397–410 (1941).
    [CrossRef]
  7. B. Lawn, Fracture of Brittle Solids, (Cambridge University Press, Cambridge, 1993).
  8. G. J. Weng; “Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystals,” Acta Mech. 37(3-4), 217–230 (1980).
    [CrossRef]
  9. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [CrossRef] [PubMed]
  10. Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
    [CrossRef]
  11. S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
    [CrossRef]
  12. M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).
  13. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
    [CrossRef] [PubMed]
  14. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  15. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
    [CrossRef]
  16. A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
    [CrossRef]
  17. L. D. Landau and E. M. Lifshitz, Theory of elasticity (Pergamon, Oxford, 1986).
  18. E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys. 36(8), 2504–2513 (1965).
    [CrossRef]
  19. R. Ruppin, “Thermal expansion of MgO from a lattice dynamical shell model,” Solid State Commun. 9(16), 1387–1389 (1971).
    [CrossRef]
  20. Data sheet of a LiF crystal: http://www.oken.co.jp/o/jpn_g/tokusei.html
  21. C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev. 106(6), 1175–1177 (1957).
    [CrossRef]

2009 (1)

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

2007 (1)

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

2006 (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

2003 (1)

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

2000 (1)

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
[CrossRef]

1988 (1)

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
[CrossRef]

1980 (1)

G. J. Weng; “Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystals,” Acta Mech. 37(3-4), 217–230 (1980).
[CrossRef]

1971 (1)

R. Ruppin, “Thermal expansion of MgO from a lattice dynamical shell model,” Solid State Commun. 9(16), 1387–1389 (1971).
[CrossRef]

1966 (1)

J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
[CrossRef]

1965 (1)

E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys. 36(8), 2504–2513 (1965).
[CrossRef]

1957 (1)

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev. 106(6), 1175–1177 (1957).
[CrossRef]

1941 (1)

J. S. Koehler, “On the dislocation theory of plastic deformation,” Phys. Rev. 60(5), 397–410 (1941).
[CrossRef]

1934 (1)

G. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. Roy. Soc. A 145(855), 362–387 (1934).
[CrossRef]

Audouard, E.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Bogardus, E. H.

E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys. 36(8), 2504–2513 (1965).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Briscoe, C. V.

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev. 106(6), 1175–1177 (1957).
[CrossRef]

Bulgakova, N. M.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Chandrasekaran, N.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
[CrossRef]

Chou, Y. T.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
[CrossRef]

Dyer, P. E.

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Fujita, K.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Gerlach, R. L.

J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
[CrossRef]

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Harmer, M. P.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
[CrossRef]

Hertel, I. V.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Hirao, K.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ikuhara, Y.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Kanehira, S.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Koehler, J. S.

J. S. Koehler, “On the dislocation theory of plastic deformation,” Phys. Rev. 60(5), 397–410 (1941).
[CrossRef]

Komanduri, R.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Meshcheryakov, Yu. P.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Miura, K.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

Raff, L. M.

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
[CrossRef]

Rhodin, T. N.

J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
[CrossRef]

Robins, J. L.

J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
[CrossRef]

Rosenfeld, A.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Ruppin, R.

R. Ruppin, “Thermal expansion of MgO from a lattice dynamical shell model,” Solid State Commun. 9(16), 1387–1389 (1971).
[CrossRef]

Sakakura, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

Shibata, N.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Si, J.

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Squire, C. F.

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev. 106(6), 1175–1177 (1957).
[CrossRef]

Stoian, R.

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Taylor, G.

G. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. Roy. Soc. A 145(855), 362–387 (1934).
[CrossRef]

Terazima, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Wang, Z. Y.

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
[CrossRef]

Weng, G. J.

G. J. Weng; “Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystals,” Acta Mech. 37(3-4), 217–230 (1980).
[CrossRef]

Acta Mech. (1)

G. J. Weng; “Dislocation Theories of Work Hardening and Yield Surfaces of Single Crystals,” Acta Mech. 37(3-4), 217–230 (1980).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I. V. Hertel, Yu. P. Meshcheryakov, N. M. Bulgakova, E. Audouard, and R. Stoian, “Dynamics of femtosecond laser induced voidlike structures in fused silica,” Appl. Phys. Lett. 94(4), 041911 (2009).
[CrossRef]

S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, and Y. Ikuhara, “Optically produced cross patterning based on local dislocations inside MgO single crystals,” Appl. Phys. Lett. 90(16), 163110 (2007).
[CrossRef]

Chem. Rev. (1)

G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. 103(2), 487–518 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

J. L. Robins, T. N. Rhodin, and R. L. Gerlach, “Dislocation structures in cleaved magnesium oxide,” J. Appl. Phys. 37(10), 3893–3903 (1966).
[CrossRef]

E. H. Bogardus, “Third-order elastic constants of Ge, MgO, and fused SiO2,” J. Appl. Phys. 36(8), 2504–2513 (1965).
[CrossRef]

Mater. Lett. (1)

Z. Y. Wang, M. P. Harmer, and Y. T. Chou, “Laser-induced controlled cracking in ceramic crystals,” Mater. Lett. 7(5-6), 224–228 (1988).
[CrossRef]

Phys. Rev. (2)

J. S. Koehler, “On the dislocation theory of plastic deformation,” Phys. Rev. 60(5), 397–410 (1941).
[CrossRef]

C. V. Briscoe and C. F. Squire, “Elastic constants of LiF from 4.2 K to 300 K by ultrasonic methods,” Phys. Rev. 106(6), 1175–1177 (1957).
[CrossRef]

Phys. Rev. B (1)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71(2), 024113 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[CrossRef] [PubMed]

Proc. Roy. Soc. A (1)

G. Taylor, “The mechanism of plastic deformation of crystals. Part I. Theoretical,” Proc. Roy. Soc. A 145(855), 362–387 (1934).
[CrossRef]

Solid State Commun. (1)

R. Ruppin, “Thermal expansion of MgO from a lattice dynamical shell model,” Solid State Commun. 9(16), 1387–1389 (1971).
[CrossRef]

Wear (1)

R. Komanduri, N. Chandrasekaran, and L. M. Raff, “M.D. Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting,” Wear 242(1-2), 60–88 (2000).
[CrossRef]

Other (6)

W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics (John Wiley & Sons, Inc. 1976), Chaps. 4 and 14.

J. P. Hirth and J. Lothe, Theory of dislocation (John Wiley & Sons, 1982).

B. Lawn, Fracture of Brittle Solids, (Cambridge University Press, Cambridge, 1993).

L. D. Landau and E. M. Lifshitz, Theory of elasticity (Pergamon, Oxford, 1986).

M. Wakaki, K. Kudo, and T. Shibuya, Physical Properties and Data of Optical Materials (CRC Press, 2007).

Data sheet of a LiF crystal: http://www.oken.co.jp/o/jpn_g/tokusei.html

Supplementary Material (2)

» Media 1: MPG (810 KB)     
» Media 2: MPG (838 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic illustration of the pump-probe microscopic imaging with a fs laser machining system. (b) Schematic illustration of the incident of the focused pump pulse inside a sample (left), and the crystal structure of MgO or LiF (right).

Fig. 2
Fig. 2

(a), (b) Optical microscope images (transmission and crossed-Nicols images, respectively) of MgO after irradiation with a single focused fs laser pulse. The red arrow in (b) indicates the polarization direction of the illumination light. (c), (d) Those of LiF.

Fig. 3
Fig. 3

Transmission images of a probe beam through a MgO crystal at various time delays after photoexcitation by a focused 20 μJ fs laser pulse (Media 1).

Fig. 4
Fig. 4

Crossed-Nicols images at various time-delays after photoexcitation by a focused 20 μJ fs laser pulse inside a (001) MgO crystal (Media 1). (a) (100) crossed-Nicols images, in which the direction of the polarization plane of the probe beam was (100) and that of the analyzer was (010). (b) (110) crossed-Nicols images.

Fig. 5
Fig. 5

(a) Transmission images of a probe beam inside a LiF(001) crystal after photoexcitation by a focused 10 μJ fs laser pulse. (Media 2) (b) Temporal evolution of the position of the stress wave on the <100> line (blue open squares), those of the edge of the crack (red filled circles) and the inner stress wave in the simulation.

Fig. 6
Fig. 6

(a), (b) Pump-probe crossed-Nicols images after fs laser irradiation inside a LiF crystal (Media 2). (c) Comparison of pump-probe images at a time-delay of 3000 ps; the transmission and (110) crossed-Nicols images of a MgO (left) and LiF crystal (right). The red and light blue arrows indicate the stress directions.

Fig. 7
Fig. 7

(a) Simulated temporal evolution of density distributions after a temperature increase at the center of a MgO crystal in 1 ps. (b)–(d) The lattice deformations in the (001) plane at 2000 ps in three regions: (b) Around the primary stress wave around the <110> line, (c) around that around the <100> line, and (d) around the inner stress wave.

Tables (1)

Tables Icon

Table 1 Densities, Thermal and Elastic Properties of MgO and LiF Crystals.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ T ( t , r ) = Δ T exp { ( | r | / w t h ) 2 } * { 1 exp ( t / τ t h ) }
ρ 2 u ( t , r ) t 2 = P ( t , r ) β { Δ T ( t , r ) }
P ( t , r ) = C E ( t , r )
C = [ C 11 C 23 C 23 0 0 0 C 23 C 11 C 23 0 0 0 C 23 C 23 C 11 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 44 ]
u k ( t = 0 , r ) = 0 u k ( t , r = b o u n d a r y ) x l = 0 ( k , l = x , y , z ) .      
v < 100 > = C 11 ρ ,
v < 110 > = C 11 + C 23 + 2 C 44 2 ρ

Metrics