Abstract

We investigate the emission spectra from the edge of optically pumped waveguide. The waveguide is based on vacuum-deposited thin films of small molecular, 2,5,2',5′-tetrakis(2,2-diphenylvinyl)biphenyl (TDPVBi). Narrowed emissions are observed both at high (> 6 KW/cm2) and low (< 1 W/cm2) pump power sources, which are attributed to two different propagation modes in the asymmetric slab waveguides, guided mode and cutoff mode, respectively. The peak wavelengths of the guided mode appear at the maximum of the photoluminescence (PL) spectrum of the TDPVBi film. In contrast, both the peak wavelength and polarization of the cutoff mode are thickness dependent. The optical gains of the two modes are measured by the variable stripe length (VSL) method. The amplification with an exceptional low threshold for the cutoff mode has been demonstrated. Our results suggest that the cutoff mode is a promising route for the reduction of lasing threshold.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
    [CrossRef]
  2. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
    [CrossRef]
  3. N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
    [CrossRef]
  4. W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
    [CrossRef]
  5. D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
    [CrossRef]
  6. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
    [CrossRef]
  7. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
    [CrossRef]
  8. G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
    [CrossRef]
  9. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
    [CrossRef]
  10. C. Ge, M. Lu, Y. Tan, and B. T. Cunningham, “Enhancement of pump efficiency of a visible wavelength organic distributed feedback laser by resonant optical pumping,” Opt. Express 19(6), 5086–5092 (2011).
    [CrossRef] [PubMed]
  11. M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
    [CrossRef]
  12. M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
    [CrossRef]
  13. S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
    [CrossRef]
  14. T. Grossmann, S. Klinkhammer, M. Hauser, D. Floess, T. Beck, C. Vannahme, T. Mappes, U. Lemmer, and H. Kalt, “Strongly confined, low-threshold laser modes in organic semiconductor microgoblets,” Opt. Express 19(10), 10009–10016 (2011).
    [CrossRef] [PubMed]
  15. F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
    [CrossRef]
  16. H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
    [CrossRef]
  17. M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
    [CrossRef]
  18. D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
    [CrossRef]
  19. S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
    [CrossRef]
  20. C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
    [CrossRef]

2011 (2)

2009 (1)

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

2008 (2)

D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
[CrossRef]

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

2007 (3)

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
[CrossRef]

2006 (2)

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

2004 (1)

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

2003 (2)

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

1998 (2)

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
[CrossRef]

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

1997 (2)

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

1996 (3)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Adachi, C.

D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
[CrossRef]

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

Andersson, M. R.

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Andrew, P.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

Bao, Z.

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

Barnes, W. L.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

Beck, T.

Berggren, M.

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

Bhongale, C. J.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

Chang, C. W.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Cunningham, B. T.

Cupertino, D.

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Díaz-García, M. A.

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
[CrossRef]

Dong, Y.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Floess, D.

Friend, R. H.

N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Frolov, S. V.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
[CrossRef]

Ge, C.

Grossmann, T.

Gupta, R.

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

Hauser, M.

He, F.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Heeger, A. J.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

Heliotis, G.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

Hide, F.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Hsu, C.-S.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Kalt, H.

Katoh, R.

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

Klinkhammer, S.

Ledochowitsch, P.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

Lemmer, U.

Li, F.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

Li, Y.

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

Liu, S.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Lu, M.

Ma, D.

D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
[CrossRef]

Ma, Y.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

Mackie, P. R.

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

Mappes, T.

McGehee, M. D.

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

Mednick, S. R.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

Miller, E. K.

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

Moriwake, M.

D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
[CrossRef]

Moses, D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

Nakanotani, H.

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

Namdas, E. B.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

Pauchard, M.

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

Pei, Q.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Perzon, E.

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

Samuel, I. D. W.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

Schwartz, B. J.

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Shen, F.

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

Slusher, R. E.

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
[CrossRef]

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

Solomesch, O.

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

Swensen, J.

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

Tan, Y.

Tang, B.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Tessler, N.

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Tong, M.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

Turnbull, G. A.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

Vannahme, C.

Vardeny, Z. V.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
[CrossRef]

Veenstra, S.

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

Wang, C.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Wang, H.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Wang, Y.

D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
[CrossRef]

Watanabe, S.

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

Wei-Guang Diau, E.

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

Xia, R.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

Xie, W.

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

Xu, H.

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Yokoyama, D.

D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
[CrossRef]

Yoshino, K.

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
[CrossRef]

Yuen, J. D.

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

Zhang, D.

D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, “Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers,” Adv. Mater. (Deerfield Beach Fla.) 21(7), 799–802 (2009).
[CrossRef]

M. Berggren, A. Dodabalapur, Z. Bao, and R. E. Slusher, “Solid-state droplet laser made from an organic blend with a conjugated polymer emitter,” Adv. Mater. (Deerfield Beach Fla.) 9(12), 968–971 (1997).
[CrossRef]

Appl. Phys. Lett. (7)

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, “Plastic microring lasers on fibers and wires,” Appl. Phys. Lett. 72(15), 1802–1804 (1998).
[CrossRef]

H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90(23), 231109 (2007).
[CrossRef]

M. Pauchard, J. Swensen, D. Moses, A. J. Heeger, E. Perzon, and M. R. Andersson, “Optical amplification of the cutoff mode in planar asymmetric polymer waveguides,” Appl. Phys. Lett. 83(22), 4488–4490 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barnes, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumpedby a microchip laser,” Appl. Phys. Lett. 82(3), 313–315 (2003).
[CrossRef]

M. Berggren, A. Dodabalapur, and R. E. Slusher, “Stimulated emission and lasing in dye-doped organic thin films with Forster transfer,” Appl. Phys. Lett. 71(16), 2230–2232 (1997).
[CrossRef]

W. Xie, Y. Li, F. Li, F. Shen, and Y. Ma, “Amplified spontaneous emission from cyano substituted oligo(p-phenylene vinylene) single crystal with very high photoluminescent efficiency,” Appl. Phys. Lett. 90(14), 141110 (2007).
[CrossRef]

D. Zhang, Y. Wang, and D. Ma, “Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles,” Appl. Phys. Lett. 91(9), 091115 (2007).
[CrossRef]

Chem. Phys. Lett. (2)

F. Hide, B. J. Schwartz, M. A. Díaz-García, and A. J. Heeger, “Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals,” Chem. Phys. Lett. 256(4–5), 424–430 (1996).
[CrossRef]

C. J. Bhongale, C. W. Chang, E. Wei-Guang Diau, C.-S. Hsu, Y. Dong, and B. Tang, “Formation of nanostructures of hexaphenylsilole with enhanced color-tunable emissions,” Chem. Phys. Lett. 419(4–6), 444–449 (2006).
[CrossRef]

J. Appl. Phys. (3)

F. Li, O. Solomesch, P. R. Mackie, D. Cupertino, and N. Tessler, “Low gain threshold of the cavity mode close to the cutoff wavelength in a three-slab asymmetric conjugated polymer-based waveguide structure,” J. Appl. Phys. 99(1), 013101 (2006).
[CrossRef]

D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103(12), 123104 (2008).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband red polyfluorene gain medium,” J. Appl. Phys. 96(12), 6959–6965 (2004).
[CrossRef]

J. Mater. Chem. (1)

S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li, and Y. Ma, “Cruciform DPVBi: synthesis, morphology, optical and electroluminescent properties,” J. Mater. Chem. 18(40), 4802–4807 (2008).
[CrossRef]

Nature (1)

N. Tessler, G. J. Denton, and R. H. Friend, “lasing from conjugated-polymer microcavities,” Nature 382(6593), 695–697 (1996).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58(11), 7035–7039 (1998).
[CrossRef]

Science (1)

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273(5283), 1833–1836 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2
Fig. 2

Absorption and photoluminescence spectra of TDPVBi film. The narrowed spectra of a waveguide with a 109 nm-thick TDPVBi film at high (green line) and low (blue line) pump power sources are also shown.Insert: the molecule structure of the TDPVBi.

Fig. 1
Fig. 1

Side elevation of the waveguide structure in which light propagates in the guided (green line) and cutoff mode (blue line). θc is the critical angle at the TDPVBi/glass interface.

Fig. 3
Fig. 3

Peak wavelengths of the narrowed spectra for the guided mode and cutoff mode as a function of the TDPVBi film thickness, the calculated cutoff wavelengths (blue line) are also shown.

Fig. 4
Fig. 4

FWHMs of the narrowed spectra of the sample with a 109-nm-thick TDPVBi film for the guided mode (green squares) and cutoff mode (blue squares) as a function of the viewing angle θ.

Fig. 5
Fig. 5

FWHMs of the narrowed spectra of the sample with a 109-nm-thick TDPVBi film for the guided mode (green squares) and cutoff mode (blue squares) as the function of the pump power.

Fig. 6
Fig. 6

(a) Dependence of the peak intensities of the narrowed spectra for the guided mode (green squares) and cutoff mode (blue squares) on the pump stripe length, the TDPVBi film thickness of the sample is 109 nm. (b) Dependence of the peak intensities of the narrowed spectra for the guided mode (green squares) and cutoff mode (blue squares) on the distance between the pump stripe and the edge of the sample

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ c T E = 2 π d ( n 2 2 n 1 2 ) 1 / 2 t g 1 ( n 1 2 n 3 2 n 2 2 n 1 2 ) 1 / 2 + m π
λ c T M = 2 π d ( n 2 2 n 1 2 ) 1 / 2 t g 1 ( n 2 2 n 3 2 ( n 1 2 n 3 2 n 2 2 n 1 2 ) 1 / 2 ) + m π
Ι = A Ρ 0 g ( e g l 1 )

Metrics