Abstract

We demonstrate an all-fiber-integrated laser based on off-the-shelf components producing square-shaped, 1 ns-long pulses at 1.03 μm wavelength with 3.1 MHz repetition rate and 83 W of average power. The master-oscillator power-amplifier system is seeded by a fiber oscillator utilizing a nonlinear optical loop mirror and producing incompressible pulses. A simple technique is employed to demonstrate that the pulses indeed have a random chirp. We propose that the long pulse duration should result in more efficient material removal relative to picosecond pulses, while being short enough to minimize heat effects, relative to nanosecond pulses commonly used in micromachining. Micromachining of Ti surfaces using 0.1 ns, 1 ns and 100 ns pulses supports these expectations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009).
    [CrossRef]
  2. M. Erdogan, B. Öktem, H. Kalaycioglu, S. Yavas, P. Mukhopadhyay, K. Eken, K. Özgören, Y. Aykac, U. H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6AI4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express 19, 10986 (2011).
    [CrossRef] [PubMed]
  3. M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
    [CrossRef]
  4. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
    [CrossRef]
  5. V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
    [CrossRef]
  6. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22, 799–801 (1997).
    [CrossRef] [PubMed]
  7. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  8. D. Y. Tang, L. M. Zhao, and L. M. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13, 2289–2294 (2005).
    [CrossRef] [PubMed]
  9. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15, 2145–2150 (2007).
    [CrossRef] [PubMed]
  10. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007).
    [CrossRef]
  11. P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
    [CrossRef]
  12. R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
    [CrossRef]
  13. I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34, 2516–2518 (2009).
    [CrossRef] [PubMed]
  14. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
    [CrossRef] [PubMed]
  15. A. Chong, J. Buckley, W. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  16. K. Özgören and F. Ö. Ilday, “A filterless all-fiber all-normal dispersion laser,” Opt. Lett. 35, 1296–1298 (2010).
    [CrossRef] [PubMed]
  17. H. Hodara, “Statistics of thermal and laser radiation,” Proc. IEEE 53, 696–704 (1965).
    [CrossRef]

2011

2010

2009

I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34, 2516–2518 (2009).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009).
[CrossRef]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

2007

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, “Noise-like pulse in a gain-guided soliton fiber laser,” Opt. Express 15, 2145–2150 (2007).
[CrossRef] [PubMed]

2006

2005

2001

R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
[CrossRef]

2000

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1997

1992

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

1988

1965

H. Hodara, “Statistics of thermal and laser radiation,” Proc. IEEE 53, 696–704 (1965).
[CrossRef]

Aykac, Y.

Barad, Y.

Buckley, J.

Budunoglu, I. L.

I. L. Budunoğlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett. 34, 2516–2518 (2009).
[CrossRef] [PubMed]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Che, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007).
[CrossRef]

Chong, A.

Doran, N. J.

Eken, K.

Erdogan, M.

Ferrari, A. C.

Fu, X. Q.

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

Hodara, H.

H. Hodara, “Statistics of thermal and laser radiation,” Proc. IEEE 53, 696–704 (1965).
[CrossRef]

Horowitz, M.

Hu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Ilday, F. Ö.

Ippen, E. P.

Kalaycioglu, H.

Kelleher, E. J. R.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
[CrossRef]

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
[CrossRef]

Li, K.

W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009).
[CrossRef]

Liu, B.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Liu, Z.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007).
[CrossRef]

Matsas, V. J.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Mukhopadhyay, P.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Murakami, M.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Newson, T. P.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

O’Neill, W.

W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009).
[CrossRef]

Oktem, B.

Öktem, B.

Özgören, K.

Popov, S. V.

Renninger, W.

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
[CrossRef]

Silberberg, Y.

Sun, Z.

Tang, D. Y.

Taylor, J. R.

Tazebay, U. H.

Travers, J. C.

Uehara, Y.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

Ülgüdür, C.

Wen, S. C.

Wise, F. W.

Wood, D.

Wu, J.

Yavas, S.

Zervas, M. N.

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Zhao, L. M.

Appl. Phys. Expr.

M. Murakami, B. Liu, Z. Hu, Z. Liu, Y. Uehara, and Y. Che, “Burst-mode femtosecond pulsed laser deposition for control of thin film morphology and material ablation,” Appl. Phys. Expr. 2, 042501 (2009).
[CrossRef]

IEEE J. Quantum Electron.

R. P. Scott, C. Langrock, and B. H. Kolner, “High dynamic range laser amplitude and phase noise measurement techniques,” IEEE J. Quantum Electron. 7, 641 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[CrossRef]

W. O’Neill and K. Li, “High-quality micromachining of silicon at 1064 nm using a high-brightness MOPA-based 20-W Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 15, 462–470 (2009).
[CrossRef]

P. K. Mukhopadhyay, K. Özgören, I. L. Budunoglu, and F. Ö. Ilday, “All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator,” IEEE J. Sel. Top. Quantum Electron. 15, 145 (2009).
[CrossRef]

Opt. Commun.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Nanosecond square pulse generation in fiber lasers with normal dispersion,” Opt. Commun. 272, 431 (2007).
[CrossRef]

V. J. Matsas, T. P. Newson, and M. N. Zervas, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization switching,” Opt. Commun. 92, 61–66 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

H. Hodara, “Statistics of thermal and laser radiation,” Proc. IEEE 53, 696–704 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the oscillator-amplifier setup. WDM: Wavelength-division multiplexer; LMA: Large mode area; MPC: Multi pump combiner. The fiber lengths, powers and pulse energies are indicated.

Fig. 2
Fig. 2

(a) Variation of pulse duration (black) and spectral width (red) with the output power of the oscillator. (b) Optical spectrum of the pulse train measured at the 10% output port. Inset: Optical spectrum in logarithmic scale. (c) Pulse shape measured with a 30 ps-rise time sampling scope. Inset: RF spectrum of an individual comb line demonstrating low-noise operation. (d) Optical spectra measured directly from the oscillator (black), and from the amplifier output at powers of 26.6 W (red), 57.4 W (green), 83 W (blue). Inset: output power vs. pump power.

Fig. 3
Fig. 3

(a) Experimental setup for the pulse chirp measurement. For (b) NOLM and (c) reference lasers, temporal and spectral (insets) profiles of the spectrally filtered (red) and unfiltered pulses (black). Spectrograms of (d) NOLM and (e) reference lasers are shown where gray-scaling indicates intensity. The data has been smoothened using Gaussian averaging to reduce graininess.

Fig. 4
Fig. 4

Wells on the polished Ti surface drilled by (a) 115 ps, (b) 1 ns and (c) 100 ns pulses in comparison. (d,e,f) show corresponding close-up scanning electron microscope (SEM) images.

Metrics