Abstract

Reflective semiconductor optical amplifiers (RSOAs) can be used as external modulators in radio over fiber (RoF) links due to their amplification and modulation characteristics and colorless property. The nonlinear distortion of RSOA, however, limits its dynamic range. In this paper we demonstrate digital predistortion (DPD) linearization techniques to improve the linearity of RSOA external modulators. 64 quadrature amplitude modulation (QAM) signals are utilized to extract the model parameters. The dynamic AM/AM and AM/PM characteristics and power spectral densities of the modulated signals from the RSOA are demonstrated without and with DPD. Experimental results show clearly that the nonlinear distortion of RSOA external modulators in RoF links can be compensated using DPD linearization techniques.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [CrossRef]
  2. M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA81.
  3. A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
    [CrossRef]
  4. G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
    [CrossRef]
  5. X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
    [CrossRef]
  6. D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
    [CrossRef]
  7. Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
    [CrossRef]
  8. E. Udvary and T. Berceli, “Improvements in the linearity of semiconductor optical amplifiers as external modulators,” IEEE Trans. Microw. Theory Tech. 58(11), 3161–3166 (2010).
    [CrossRef]
  9. J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
    [CrossRef]
  10. A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
    [CrossRef]
  11. L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifier,” IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010).
    [CrossRef]
  12. H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
    [CrossRef]
  13. L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
    [CrossRef]
  14. D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
    [CrossRef]

2011 (1)

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

2010 (7)

E. Udvary and T. Berceli, “Improvements in the linearity of semiconductor optical amplifiers as external modulators,” IEEE Trans. Microw. Theory Tech. 58(11), 3161–3166 (2010).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[CrossRef]

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifier,” IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010).
[CrossRef]

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

2008 (2)

X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
[CrossRef]

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

2006 (1)

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

2004 (1)

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

2001 (1)

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[CrossRef]

Asbeck, P. M.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Berceli, T.

E. Udvary and T. Berceli, “Improvements in the linearity of semiconductor optical amplifiers as external modulators,” IEEE Trans. Microw. Theory Tech. 58(11), 3161–3166 (2010).
[CrossRef]

Bittner, S.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Brazil, T. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Brenot, R.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

Cao, H.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

de Valicourt, G.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Diehm, F.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Ding, L.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Draxler, P. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Duan, G. H.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Enard, A.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Eriksson, T.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

Fager, C.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

Ferreira, F.

Giardina, C. R.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Gibbon, T.

X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
[CrossRef]

Gomes, N. J.

Grahn, J.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

Guan, L.

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifier,” IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010).
[CrossRef]

Harjula, I.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Hekkala, A.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Kenney, J. S.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Kim, J.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[CrossRef]

Kimball, D. F.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Konstantinou, K.

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[CrossRef]

Kotzsch, V.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Lamponi, M.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Lasanen, M.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Liu, Z.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

Ma, Z.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Maké, D.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Monroy, I.

X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
[CrossRef]

Morgan, D. R.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Nemati, H. M.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

Nkan, A.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Nkansah, A.

Pastalan, J.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

Pato, S.

Sadeghi, M.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

Tehrani, A. S.

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

Udvary, E.

E. Udvary and T. Berceli, “Improvements in the linearity of semiconductor optical amplifiers as external modulators,” IEEE Trans. Microw. Theory Tech. 58(11), 3161–3166 (2010).
[CrossRef]

Van Dijk, F.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Vieira, L. C.

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

Violas, M.

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

Violas, M. A.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Wake, D.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[CrossRef]

D. Wake, A. Nkansah, N. J. Gomes, G. de Valicourt, R. Brenot, M. Violas, Z. Liu, F. Ferreira, and S. Pato, “A comparison of radio over fiber link types for the support of wideband radio channels,” J. Lightwave Technol. 28(16), 2416–2422 (2010).
[CrossRef]

Ware, C.

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

Yan, J. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Yu, X.

X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
[CrossRef]

Zhou, G. T.

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

Zhu, A.

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifier,” IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010).
[CrossRef]

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

Zierdt, M. G.

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

Electron. Lett. (1)

J. Kim and K. Konstantinou, “Digital predistortion of wideband signals based on power amplifier model with memory,” Electron. Lett. 37(23), 1417–1418 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Yu, T. Gibbon, and I. Monroy, “Bidirectional radio-over-fiber system with phase-modulation downlink and RF oscillator-free uplink using a reflective SOA,” IEEE Photon. Technol. Lett. 20(24), 2180–2182 (2008).
[CrossRef]

Z. Liu, M. Sadeghi, G. de Valicourt, R. Brenot, and M. Violas, “Experimental validation of a reflective semiconductor optical amplifier model used as a modulator in radio over fiber systems,” IEEE Photon. Technol. Lett. 23(9), 576–578 (2011).
[CrossRef]

IEEE Trans. Commun. (1)

L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, “A robust digital baseband predistorter constructed using memory polynomials,” IEEE Trans. Commun. 52(1), 159–165 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (5)

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[CrossRef]

L. Guan and A. Zhu, “Low-cost FPGA implementation of Volterra series-based digital predistorter for RF power amplifier,” IEEE Trans. Microw. Theory Tech. 58(4), 866–872 (2010).
[CrossRef]

H. Cao, H. M. Nemati, A. S. Tehrani, T. Eriksson, J. Grahn, and C. Fager, “Linearization of efficiency-optimize dynamic load modulation transmitter architectures,” IEEE Trans. Microw. Theory Tech. 58(4), 873–881 (2010).
[CrossRef]

E. Udvary and T. Berceli, “Improvements in the linearity of semiconductor optical amplifiers as external modulators,” IEEE Trans. Microw. Theory Tech. 58(11), 3161–3166 (2010).
[CrossRef]

G. de Valicourt, M. A. Violas, D. Wake, F. Van Dijk, C. Ware, A. Enard, D. Maké, Z. Liu, M. Lamponi, G. H. Duan, and R. Brenot, “Radio over fiber access network architecture based on new optimized RSOA devices with large modulation bandwidth and high linearity,” IEEE Trans. Microw. Theory Tech. 58(11), 3248–3258 (2010).
[CrossRef]

IEEE Trans. Signal Process. (1)

D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of RF power amplifiers,” IEEE Trans. Signal Process. 54(10), 3852–3860 (2006).
[CrossRef]

IEEE Wireless Commun. (1)

A. Hekkala, M. Lasanen, I. Harjula, L. C. Vieira, N. J. Gomes, A. Nkan, S. Bittner, F. Diehm, and V. Kotzsch, “Analysis of and compensation for non-ideal RoF links in DAS [Coordinated and Distributed MIMO],” IEEE Wireless Commun. 17(3), 52–59 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Other (1)

M. J. Crisp, S. Li, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of radio over fibre distributed antenna network for combined in-building WLAN and 3G coverage,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThA81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of digital predistortion.

Fig. 2
Fig. 2

The experimental test bench.

Fig. 3
Fig. 3

Dynamic characteristics of RSOA without and with DPD (a) AM/AM; (b) AM/PM.

Fig. 4
Fig. 4

Normalized output power spectra of RSOA without and with DPD and spectrum of transmitted signal.

Fig. 5
Fig. 5

Normalized constellation (blue ‘x’ for without DPD, green ‘•’ for with DPD, and red ‘+’ for the transmitted symbol).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u ˜ ( n ) = k = 1 K a l = 0 L a 1 a k l y ˜ ( n l ) | y ˜ ( n l ) | k 1 + k = 1 K b l = 0 L b 1 m = 1 M b b k l m y ˜ ( n l ) | y ˜ ( n l m ) | k             + k = 1 K c l = 0 L c 1 m = 1 M c c k l m y ˜ ( n l ) | y ˜ ( n l + m ) | k
h ^ = ( Y H Y ) 1 Y H u
Y = [ y ˜ ( 0 ) y ˜ ( ( L a 1 ) ) | y ˜ ( ( L a 1 ) ) | K a 1 y ˜ ( 0 ) | y ˜ ( 1 ) | y ˜ ( n ) y ˜ ( n ( L a 1 ) ) | y ˜ ( n ( L a 1 ) ) | K a 1 y ˜ ( n ) | y ˜ ( n 1 ) | y ˜ ( N 1 ) y ˜ ( N 1 ( L a 1 ) ) | y ˜ ( N 1 ( L a 1 ) ) | K a 1 y ˜ ( N 1 ) | y ˜ ( N 1 1 ) |      y ˜ ( ( L b 1 ) ) | y ˜ ( ( L b 1 ) M b ) | K b y ˜ ( 0 ) | y ˜ ( 1 ) | y ˜ ( ( L c 1 ) ) | y ˜ ( ( L c 1 ) + M c ) | K c y ˜ ( n ( L b 1 ) ) | y ˜ ( n ( L b 1 ) M b ) | K b y ˜ ( n ) | y ˜ ( n + 1 ) | y ˜ ( n ( L c 1 ) ) | y ˜ ( n ( L c 1 ) + M c ) | K c y ˜ ( N 1 ( L b 1 ) ) | y ˜ ( N 1 ( L b 1 ) M b ) | K b y ˜ ( N 1 ) | y ˜ ( N 1 + 1 ) | y ˜ ( N 1 ( L c 1 ) ) | y ˜ ( N 1 ( L c 1 ) + M c ) | K c ]
u = [ u ˜ ( 0 ) u ˜ ( n ) u ˜ ( N 1 ) ] T
u ^ = X h ^
E V M = n = 1 N | y ( n ) s ( n ) | 2 n = 1 N | s ( n ) | 2

Metrics