Abstract

The effect of broad-range (16 nm) self-sweeping of a narrow-line (less than 1 pm) Yb-doped fiber laser has been demonstrated experimentally. It is found that the effect arises from the self-sustained relaxation oscillations. As a result, the sweeping rate increases as square root of the laser power and decreases with increasing cavity length. Based on these results we propose a model describing dynamics of the laser frequency. The model takes into account the effects of gain saturation at the laser transition and spatial hole burning in the self-pulsing regime.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
    [CrossRef]
  2. V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
    [CrossRef]
  3. A. V. Kir’yanov and N. N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
    [CrossRef]
  4. I. A. Lobach, “Narrow-line self-sweeping Yb-doped fiber laser,” in Proceeding of Photonics and Optical Technologies Conference (Novosibirsk, Russia, 9–11 February), pp. 42–43 (2011).
  5. B. N. Upadhyaya, A. Kuruvilla, U. Chakravarty, M. R. Shenoy, K. Thyagarajan, and S. M. Oak, “Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser,” Appl. Opt. 49(12), 2316–2325 (2010).
    [CrossRef] [PubMed]
  6. A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
    [CrossRef]
  7. M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27(15), 1294–1296 (2002).
    [CrossRef] [PubMed]
  8. W. Guan and J. R. Marciante, “Complete elimination of self-pulsations in dual-clad ytterbium-doped fiber lasers at all pumping levels,” Opt. Lett. 34(6), 815–817 (2009).
    [CrossRef] [PubMed]
  9. L. Orsila and O. G. Okhotnikov, “Three- and four-level transition dynamics in Yb-fiber laser,” Opt. Express 13(9), 3218–3223 (2005).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001).
  11. Ya. I. Khanin, Fundamentals of Laser Dynamics (Cambridge International Science Publishing, 2005).
  12. O. Zvelto, Principles of Lasers (Plenium Press, 1989).
  13. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
    [CrossRef]
  14. S. Stepanov, A. A. Fotiadi, and P. Mégret, “Effective recording of dynamic phase gratings in Yb-doped fibers with saturable absorption at 1064nm,” Opt. Express 15(14), 8832–8837 (2007).
    [CrossRef] [PubMed]
  15. P. Dainese, P. S. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
    [CrossRef] [PubMed]
  16. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
    [CrossRef] [PubMed]

2011 (1)

A. V. Kir’yanov and N. N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[CrossRef]

2010 (1)

2009 (2)

2007 (1)

2006 (1)

2005 (1)

2002 (1)

2000 (1)

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

1973 (1)

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

1962 (1)

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[CrossRef]

Antsiferov, V. V.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Brunel, M.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Chakravarty, U.

Chartier, T.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27(15), 1294–1296 (2002).
[CrossRef] [PubMed]

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

Dainese, P.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Folin, K. G.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

Fotiadi, A. A.

Fragnito, H. L.

Guan, W.

Hanna, D. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Hideur, A.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27(15), 1294–1296 (2002).
[CrossRef] [PubMed]

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

Hughes, T. P.

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[CrossRef]

Il’ichev, N. N.

A. V. Kir’yanov and N. N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[CrossRef]

Joly, N.

Khelif, A.

Kir’yanov, A. V.

A. V. Kir’yanov and N. N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[CrossRef]

Kuruvilla, A.

Laude, V.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Marciante, J. R.

Martel, G.

Mégret, P.

Nakazaki, Y.

Oak, S. M.

Okhotnikov, O. G.

Orsila, L.

Ozkul, C.

Özkul, C.

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Pivtsov, V. S.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

Russell, P. S.

Salhi, M.

Sanchez, F.

M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, and F. Sanchez, “Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser,” Opt. Lett. 27(15), 1294–1296 (2002).
[CrossRef] [PubMed]

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

Shenoy, M. R.

Stepanov, S.

Thyagarajan, K.

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Ugozhaev, V. D.

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

Upadhyaya, B. N.

Wiederhecker, G. S.

Yamashita, S.

Young, K. M.

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2–13 (1995).
[CrossRef]

Laser Phys. Lett. (1)

A. V. Kir’yanov and N. N. Il’ichev, “Self-induced laser line sweeping in an ytterbium fiber laser with non-resonant Fabry-Perot cavity,” Laser Phys. Lett. 8(4), 305–312 (2011).
[CrossRef]

Nature (1)

T. P. Hughes and K. M. Young, “Mode sequences in ruby laser emission,” Nature 196(4852), 332–334 (1962).
[CrossRef]

Opt. Commun. (1)

A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double clad fiber laser,” Opt. Commun. 186(4-6), 311–317 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Sov. J. Quantum Electron. (1)

V. V. Antsiferov, V. S. Pivtsov, V. D. Ugozhaev, and K. G. Folin, “Spike structure of the emission of solid-state lasers,” Sov. J. Quantum Electron. 3(3), 211–215 (1973).
[CrossRef]

Other (4)

I. A. Lobach, “Narrow-line self-sweeping Yb-doped fiber laser,” in Proceeding of Photonics and Optical Technologies Conference (Novosibirsk, Russia, 9–11 February), pp. 42–43 (2011).

G. P. Agrawal, Application of Nonlinear Fiber Optics (Academic Press, 2001).

Ya. I. Khanin, Fundamentals of Laser Dynamics (Cambridge International Science Publishing, 2005).

O. Zvelto, Principles of Lasers (Plenium Press, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the broad-range self-sweeping of narrow-line Yb-doped laser.

Fig. 2
Fig. 2

Typical temporal dynamics of self-pulsations and high-frequency modulation of the pulses (inset).

Fig. 3
Fig. 3

The average frequency of the relaxation oscillations ν o s c i l l (a) and the sweeping rate α s w e e p (b) versus the output power of the laser at different cavity lengths (corresponding intermode frequency c / 2 L n is given) in the scheme with the collimator and FLM. Lines – square root approximation. Arrows indicate the instability thresholds of the self-sweeping regime.

Fig. 4
Fig. 4

Temporal dynamics of wavelength for the FBG (a) and the FLM (b) cavities. Red and black curves correspond to different configuration of PC.

Fig. 5
Fig. 5

Effective gain as a function of the wavelength difference λ j λ 0 (bottom) or the mode index j (top) in accordance with Eq. (3). The curves correspond to generation of one mode (#1), three modes (#2) and hundred modes (#3). Index of the last generated mode is 0. The curves are plotted for the case L / l = 8.

Fig. 6
Fig. 6

Qualitative dynamics of the gain contour against loss level at self-sweeping: a – after generation of the first pulse, b – before wavelength hopping, after many pulses when the tail of the grating is “washed out” (oscillations are not shown), gain is presented in log scale. The scale of holes is changed for convenience.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν o s c i l l 2 1 τ c ( P p P t h 1 ) I L ,
g n 0 l I n ( x ) g m ( x ) d x l 2 sinc ( 2 π l L ( m n ) ) .
g j i sinc ( 2 π l L ( i j ) ) .
Δ ν = 3 c / 8 n l ,

Metrics