Abstract

We demonstrate experimentally passive mode-locking of an optoelectronic oscillator which generates a single-cycle radio-frequency pulse train. The measured pulse to pulse jitter was less than 5 ppm of the round-trip duration. The pulse waveform was repeated each round-trip. This result indicates that the relative phase between the pulse envelope and the carrier wave is autonomously locked. The results demonstrate, for the first time, that single-cycle pulses can be directly generated by a passive mode-locked oscillator. The passive mode-locked optoelectronic oscillator is important for developing novel radars and radio-frequency pulsed sources and it enables studying directly the physics of single-cycle pulse generation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
    [CrossRef]
  2. C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
    [CrossRef]
  3. S. Namiki, X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996).
    [CrossRef]
  4. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
    [CrossRef]
  5. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  6. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Semiconductor saturable-absorber mirrorassisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime,” Opt. Lett. 24, 631–633 (1999).
    [CrossRef]
  7. S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 17410–17419 (2008).
    [CrossRef] [PubMed]
  8. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
    [CrossRef] [PubMed]
  9. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
    [CrossRef] [PubMed]
  10. G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [CrossRef]
  11. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
    [CrossRef]
  12. N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).
  13. J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
    [CrossRef]
  14. Y. K. Chembo, A. Hmima, P. Lacourt, L. Larger, and J. M. Dudley, “Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression,” J. Lightwave Technol. 27, 5160–5167 (2009).
    [CrossRef]
  15. J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses,” Opt. Express 11, 1430–1435 (2003).
    [CrossRef] [PubMed]
  16. A. F. Kardo-Sysoev, “New power semiconuctor Devices for generation of nano- and subnanosecond pulses,” in Ultra-wideband radar technology, J. D. Taylor Ed. (CRC, 2001), ch. 9.
  17. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
    [CrossRef]
  18. C. C. Cutler, “The regenerative pulse generator,” Proc. IRE, 43, 140–148 (1955).
    [CrossRef]
  19. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  20. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25, 3219–3235 (2007).
    [CrossRef]
  21. J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
    [CrossRef]
  22. F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
    [CrossRef]
  23. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
    [CrossRef]
  24. M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
    [CrossRef]
  25. V. S. Grigoryan, C. R. Menyuk, and R.-M. Mu “Calculation of timing and amplitude jitter in dispersion-managed optical fiber communications using linearization,” J. Lightwave Technol. 17, 1347–1356 (1999).
    [CrossRef]
  26. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1981), pp. 553–560.

2010 (3)

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

2009 (2)

J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Y. K. Chembo, A. Hmima, P. Lacourt, L. Larger, and J. M. Dudley, “Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression,” J. Lightwave Technol. 27, 5160–5167 (2009).
[CrossRef]

2008 (2)

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

S. Rausch, T. Binhammer, A. Harth, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16, 17410–17419 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

2004 (1)

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
[CrossRef]

2003 (1)

2002 (1)

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

1999 (3)

1996 (2)

1995 (1)

N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).

1993 (1)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

1975 (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

1974 (1)

C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[CrossRef]

1966 (1)

A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
[CrossRef]

1955 (1)

C. C. Cutler, “The regenerative pulse generator,” Proc. IRE, 43, 140–148 (1955).
[CrossRef]

Angelow, G.

Aquila, A. L.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Attwood, D. T.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Bilenca, A.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Binhammer, T.

Chembo, Y. K.

Chen, Y.

Cho, S. H.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Cutler, C. C.

C. C. Cutler, “The regenerative pulse generator,” Proc. IRE, 43, 140–148 (1955).
[CrossRef]

Dahan, D.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

DeMaria, A. J.

A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
[CrossRef]

Devgan, P.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Dudley, J. M.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Eisenstein, G.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Fu, S.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Fujimoto, J. G.

Gagnon, J.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Gallmann, L.

Goulielmakis, E.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Grein, M. E.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
[CrossRef]

Grigoryan, V. S.

Gullikson, E. M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Harris, S. E.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Harth, A.

Haus, H. A.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

S. Namiki, X. Yu, and H. A. Haus, “Observation of nearly quantum-limited timing jitter in an all-fiber ring laser,” J. Opt. Soc. Am. B 13, 2817–2823 (1996).
[CrossRef]

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

Heyman, H.

A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
[CrossRef]

Hmima, A.

Hofstetter, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Hong, X.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Ippen, E. P.

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kardo-Sysoev, A. F.

A. F. Kardo-Sysoev, “New power semiconuctor Devices for generation of nano- and subnanosecond pulses,” in Ultra-wideband radar technology, J. D. Taylor Ed. (CRC, 2001), ch. 9.

Kärtner, F. X.

Keller, U.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Kienberger, R.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Kin-Yip Wong, K.

J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Kleineberg, U.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Krausz, F.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Kumar, P.

Lacourt, P.

Larger, L.

Lasri, J.

J. Lasri, P. Devgan, R. Tang, and P. Kumar, “Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses,” Opt. Express 11, 1430–1435 (2003).
[CrossRef] [PubMed]

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Li, J.

J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Li, Y.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Liang, Y.

J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

Lin, J.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[CrossRef]

N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).

Matuschek, N.

Mecozzi, A.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

Menyuk, C. R.

Morgner, U.

Morier-Genoud, F.

Mu, R.-M.

Namiki, S.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Rausch, S.

Ritter, D.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Salik, E.

N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).

Scheuer, V.

Schultze, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Sell, A

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

Shank, C. V.

C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[CrossRef]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Shum, P.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Shverdin, M. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Sidorov, V.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Skolnik, M. I.

M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1981), pp. 553–560.

Steinmeyer, G.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Stetsen, D. A.

A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
[CrossRef]

Sutter, D. H.

Tang, R.

Tschudi, T.

Uiberacker, M.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Walker, D. R.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Wang, Q.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Wu, J.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Xu, K.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Yakovlev, V. S.

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Yao, J.

Yao, X. S.

Yavuz, D. D.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Yin, G. Y.

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Yu, N.

N. Yu, E. Salik, and L. Maleki, “Ultralow-noise mode-locked laser with coupled optoelectronic oscillator configuration,” Opt. Lett. 15, 1231–1233 (1995).

Yu, X.

Yvind, K.

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

Zeng, F.

Zhang, F.

F. Zhang, J. Wu, S. Fu, K. Xu, Y. Li, X. Hong, P. Shum, and J. Lin “Simultaneous multi-channel CMW-band and MMW-band UWB monocycle pulse generation using FWM effect in a highly nonlinear photonic crystal fiber,” Opt. Express 17, 15870–15875 (2010).
[CrossRef]

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

A. J. DeMaria, D. A. Stetsen, and H. Heyman, “Experimental study of mode-locked Ruby laser,” Appl. Phys. Lett. 8, 22 (1966).
[CrossRef]

C. V. Shank and E. P. Ippen, “Subpicosecond kilowatt pulses from a mode-locked cw dye laser,” Appl. Phys. Lett. 24, 373–375 (1974).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983–996 (1993).
[CrossRef]

M. E. Grein, H. A. Haus, Y. Chen, and E. P. Ippen, “Quantum-limited timing jitter in actively modelocked lasers,” IEEE J. Quantum Electron. 40, 1458–1470 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Li, Y. Liang, and K. Kin-Yip Wong, “Millimeter-wave UWB signal generation via frequency up-conversion using fiber optical parametric amplifier,” IEEE Photon. Technol. Lett. 21, 1172–1174 (2009).
[CrossRef]

J. Lasri, A. Bilenca, D. Dahan, V. Sidorov, G. Eisenstein, D. Ritter, and K. Yvind, “Self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals,” IEEE Photon. Technol. Lett. 14, 1004–1006 (2002).
[CrossRef]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

G. Krauss, S. Lohss, T. Hanke, A Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4, 117–122 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, “Generation of a single-cycle optical pulse,” Phys. Rev. Lett. 94, 033904 (2005).
[CrossRef] [PubMed]

Proc. IRE, (1)

C. C. Cutler, “The regenerative pulse generator,” Proc. IRE, 43, 140–148 (1955).
[CrossRef]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008).
[CrossRef] [PubMed]

Other (2)

A. F. Kardo-Sysoev, “New power semiconuctor Devices for generation of nano- and subnanosecond pulses,” in Ultra-wideband radar technology, J. D. Taylor Ed. (CRC, 2001), ch. 9.

M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, 1981), pp. 553–560.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic description of the experimental setup. Light from a continuous wave semiconductor laser is fed into an electro-optic Mach-Zehender modulator (MZM). The modulated light is sent through a 200 m length fiber and is then detected by using a fast photodetector (PD). The detector output is amplified by a non-saturable RF amplifier that is connected to a saturable amplifier. The amplifier output is fed back through a coupler into the RF port of the MZM to close the loop. The inset describes schematically the saturable RF amplifier: an RF signal is fed into a variable-voltage-attenuator (VVA) and is then amplified by using an RF amplifier. The RF power at the output of the amplifier is tapped out by an RF detector and is filtered by a low-pass-filter (LPF) with a cutoff frequency of 100 kHz. This signal controls the attenuation of the VVA.

Fig. 2
Fig. 2

(a) Gain spectrum of the saturable RF amplifier, normalized to the maximal gain G max = 13.7dB. (b) Comparison between the phase velocity v phase (blue) and the group velocity vg (red) in one rountrip that are normalized to v 0 = 2.11 · 108 m/s. The relative difference between the phase velocity and the group velocity has an oscillatory structure in the frequency domain, with a maximal amplitude of about ±0.05% and a period of about 60 MHz. The high-frequency oscillation of the group velocity over a frequency octave of 440–880 MHz allows autonomous locking of the relative phase between the pulse envelope and the carrier wave as obtained in the experiments.

Fig. 3
Fig. 3

(a) The transmission curve of the MZM calculated by using Eq. (1) for a bias voltage vB =10.7 V. (b) Waveform at the RF port of the modulator. The waveform was obtained by measuring the pulse at the output port of the coupler by using a real-time oscilloscope, adding 18.7 dB and shifting the phase waveform by 90°. (c) Normalized optical power at the output of the MZM, P mod(t)/(αP 0) (defined in Eq. (1)), that is measured by using a 10% optical coupler that is connected to the output port of MZM and measuring the optical signal by using a sampling oscilloscope with an average of 256 samples (green-line). The optical waveform is compared to that calculated by multiplying the waveform at the input of the MZM by its transfer curve (red-line).

Fig. 4
Fig. 4

Measurement of the single-cycle pulse train by using a real-time oscilloscope (a–b) and by using a spectrum analyzer (c–d). (a) single-cycle pulse waveform with a carrier period of 1.5 ns that corresponds to a carrier frequency of 650 MHz. (b) single-cycle pulse train with a period of 948.5 ns that corresponds to a repetition rate of 1.0543 MHz. (c) Envelope of the spectrum measured with a resolution bandwidth RBW = 1 MHz. (d) Oscillating modes around a frequency of 649 MHz, measured with a resolution bandwidth RBW = 10 kHz. The mode spacing of 1.0543 MHz corresponds to the time period of the pulse train. The voltage at the modulator input is 7.2 times higher than the voltage shown in the figure.

Fig. 5
Fig. 5

Single-cycle pulse waveform as it was measured by a real-time oscilloscope (yellow circles) and by a sampling oscilloscope with an averaging of 256 samples (red solid-line). The waveform has a carrier period of 1.5 ns and its extracted envelope norm, ±|a(t)| (black dashed-line), has a full-duration-at-half-maximum of 1.5 ns. The signal that is calculated from the envelope is shown for comparison (green solid-line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P mod ( t ) = ( α P 0 / 2 ) ( 1 η sin { π [ v in ( t ) / v π , AC + ( v B v P ) / ( v π , DC ] } ) ,
T p = t f 2 ( t ) d t / E 0 ,
E 0 = f 2 ( t ) d t .
T = τ / 2 τ / 2 t [ f ( t ) + n ( t ) ] 2 d t / E 0 ,
δ T 2 E 0 τ / 2 τ / 2 t f ( t ) n ( t ) d t ,
σ τ = 2 E 0 ( G ρ N R / 2 ) τ / 2 τ / 2 t 2 f 2 ( t ) d t .

Metrics