Abstract

All-optical fiber sensors based on ultracompact fiber inline Mach-Zehnder interferometer (MZI) are fabricated by side-ablating a U-shape microcavity in a single-mode optical fiber with the fiber core partially removed using femtosecond (fs) laser pulses, in which the two light paths are accordingly formed in the remaining D-type fiber core and the U-shape microcavity. Beam propagation method (BPM) analysis is utilized to illustrate the dependences of good transmission spectra on parameters including the ablation depth, ablation length and the refractive index of U-shape micocavity, which gives some guidelines to optimize parameters for fs laser micromachining and predicts RI (refractive index) sensitivities within given RI ranges. The modeling results of ultrahigh RI sensitivities for gases and solutions are −3243.75 ± 0.65nm/RIU (refractive index unit) and −10789.29 ± 18.91nm/RIU, respectively. In RI testing experiments, the sensor exhibits ultrahigh RI sensitivities of −3754.79 ± 44.24nm/RIU with refractive indices ranging from 1.0001143 to 1.0002187 by testing different mixture ratios of N2 and He gases, and −12162.01 ± 173.92nm/RIU with refractive indices ranging from 1.3330 to 1.33801 by testing different concentrations of sucrose solutions, which is essentially in agreement with the modeling results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33(24), 2934–2936 (2008).
    [CrossRef] [PubMed]
  2. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
    [CrossRef]
  3. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
    [CrossRef]
  4. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [CrossRef]
  5. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
    [CrossRef]
  6. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
    [CrossRef]
  7. T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
    [CrossRef] [PubMed]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [CrossRef]
  9. Z. Tian and S. S. H. Yam, “In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [CrossRef]
  10. B. E. Little, J. P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [CrossRef]
  11. http://www.piramoon.com/sucrose.php .

2011 (1)

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

2010 (2)

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[CrossRef]

2009 (3)

Z. Tian and S. S. H. Yam, “In-Line Single-Mode Optical Fiber Interferometric Refractive Index Sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
[CrossRef]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

2008 (2)

2006 (1)

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[CrossRef]

1999 (1)

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Ha, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Han, Y.

Haus, H. A.

Jiang, L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[CrossRef]

Jung, Y.

Kim, D. K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Laine, J. P.

Lee, B. H.

Lee, S.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33(24), 2934–2936 (2008).
[CrossRef] [PubMed]

Li, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Liao, C.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Little, B. E.

Liu, S.

Lu, P.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[CrossRef]

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Lu, Y.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Oh, K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Y. Jung, S. Lee, B. H. Lee, and K. Oh, “Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide,” Opt. Lett. 33(24), 2934–2936 (2008).
[CrossRef] [PubMed]

Park, M.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Shin, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Sohn, I. B.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

Tian, Z.

Tsai, H. L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[CrossRef]

Wang, D. N.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[CrossRef]

Wang, S.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

Wang, Y.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[CrossRef]

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Wei, T.

Xiao, H.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

T. Wei, Y. Han, H. L. Tsai, and H. Xiao, “Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser,” Opt. Lett. 33(6), 536–538 (2008).
[CrossRef] [PubMed]

Yam, S. S. H.

Yang, M.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[CrossRef]

Zhao, L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, “High-Temperature Sensing Using Miniaturized Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 22(1), 39–41 (2010).
[CrossRef]

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact Intrinsic Micro Air-Cavity Fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

J. Appl. Phys. (1)

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100(2), 023116 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Sensors (Basel Switzerland) (1)

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A High-Quality Mach-Zehnder Interferometer Fiber Sensor by Femtosecond Laser One-Step Processing,” Sensors (Basel Switzerland) 11(1), 54–61 (2011).
[CrossRef]

Other (1)

http://www.piramoon.com/sucrose.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The fabricated MZI structure. (a) Schematic illustration. (b) Side view (a half part). (c) Cross section. (d) Transmission spectrum.

Fig. 2
Fig. 2

(a) Contour map of the computed fundamental mode. (b) The schematic diagram illustration of MZI in DOL coordinate for BPM analysis.

Fig. 3
Fig. 3

Contour maps and transmission spectra of BPM analysis with the simulated parameters. (a) & (b) ncavity =1.0002926 and L=100μm. (c) & (d) ncavity =1.333and L=100μm. (e) & (f) ncavity =1.0002926 and L=150μm. (g) & (h) ncavity =1.333 and L=150μm.

Fig. 4
Fig. 4

BPM analysis of RI sensitivity for gases (left part of image) and BPM analysis of RI sensitivity for solutions (right part of image)

Fig. 5
Fig. 5

Transmission spectra vary with five different mixture ratios of N2 and He gases, the inset is the magnification of interference dips in circle.

Fig. 6
Fig. 6

Experimental results of RI sensitivity for mixture gases.

Fig. 7
Fig. 7

Transmission spectra vary with seven different concentrations of sucrose solutions.

Fig. 8
Fig. 8

Experimental results of RI sensitivity for sucrose solutions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ϕ .
( 2 π Δ n e f f L / λ m + 1 + φ 0 ) ( 2 π Δ n e f f L / λ m + φ 0 ) = 2 π .
L = λ m λ m + 1 / ( Δ n e f f ( λ m λ m + 1 ) ) .

Metrics