Abstract

We introduce a versatile, robust, and integrated technique to selectively fill fluid into a desired pattern of air holes in a photonic crystal fiber (PCF). Focused ion beam (FIB) is used to efficiently mill a microchannel on the end facet of a PCF before it is spliced to a single-mode fiber (SMF). Selected air holes are therefore exposed to the atmosphere through the microchannel for fluid filling. A low-loss in-line tunable optical hybrid fiber device is demonstrated by using such a technique.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-20-2589 .
    [CrossRef] [PubMed]
  2. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19356 .
    [CrossRef] [PubMed]
  3. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [CrossRef] [PubMed]
  4. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  5. B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-9-13-698 .
    [CrossRef] [PubMed]
  6. C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15(19), 12145–12150 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12145 .
    [CrossRef] [PubMed]
  7. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-22-9014 .
    [CrossRef] [PubMed]
  8. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
    [CrossRef]
  9. Y. Wang, S. Liu, X. Tan, and W. Jin, “Selective-fluid-filling technique of microstructured optical fibers,” J. Lightwave Technol. 28, 3193–3196 (2010).
  10. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
    [CrossRef] [PubMed]
  11. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [CrossRef] [PubMed]
  12. C. Martelli, P. Olivero, J. Canning, N. Groothoff, S. Prawer, S. Huntington, and B. Gibson, “Micromachining long period gratings in optical fibres using focussed ion beam,” OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling (BGPP 2007), Quebec City, Canada, (2007).
  13. S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
    [CrossRef]
  14. A. Cerqueira S, F. Luan, C. M. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926 .
    [CrossRef] [PubMed]
  15. A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10(23), 1320–1333 (2002).
    [PubMed]
  16. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S. T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45(10), 2261–2264 (2006).
    [CrossRef] [PubMed]

2011 (2)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

2010 (1)

2009 (2)

2007 (2)

2006 (2)

2005 (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-22-9014 .
[CrossRef] [PubMed]

2004 (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

2003 (1)

2002 (1)

2001 (1)

Abeeluck, A.

Alkeskjold, T. T.

Bang, O.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bennet, F. H.

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

Broeng, J.

Canning, J.

Cerqueira S, A.

Cordeiro, C. M.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Demokan, M.

Eggleton, B.

Eggleton, B. J.

Gauza, S.

George, A. K.

Gibson, B.

Groothoff, N.

Hale, A.

Headley, C.

Hermann, D.

Hermann, D. S.

Ho, H.

Hoo, Y.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Huntington, S.

Jeong, Y.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Jin, W.

Joe, H.-E.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Kang, S.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Kerbage, C.

Kim, J.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Kivshar, Y. S.

Knight, J. C.

A. Cerqueira S, F. Luan, C. M. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926 .
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Krolikowski, W.

Kuhlmey, B. T.

Laegsgaard, J.

Larsen, T.

Li, J.

Litchinitser, N.

Liu, S.

Luan, F.

Martelli, C.

Min, B.-K.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Neshev, D. N.

Oh, K.

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

Olivero, P.

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Rasmussen, P. D.

Rosberg, C. R.

Russell, P. S.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Tan, X.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Wang, Y.

Wei, L.

Westbrook, P.

Windeler, R.

Wu, D. K. C.

Wu, S. T.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19356 .
[CrossRef] [PubMed]

Zhao, C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85(22), 5182–5184 (2004).
[CrossRef]

S. Kang, H.-E. Joe, J. Kim, Y. Jeong, B.-K. Min, and K. Oh, “Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,” Appl. Phys. Lett. 98(24), 241103 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Express (7)

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17(22), 19356–19364 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-22-19356 .
[CrossRef] [PubMed]

C. R. Rosberg, F. H. Bennet, D. N. Neshev, P. D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, and Y. S. Kivshar, “Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers,” Opt. Express 15(19), 12145–12150 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12145 .
[CrossRef] [PubMed]

B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsexpress.org/abstract.cfm?URI=oe-9-13-698 .
[CrossRef] [PubMed]

A. Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10(23), 1320–1333 (2002).
[PubMed]

T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11(20), 2589–2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=oe-11-20-2589 .
[CrossRef] [PubMed]

L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, “Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer,” Opt. Express 13(22), 9014–9022 (2005), http://www.opticsexpress.org/abstract.cfm?URI=oe-13-22-9014 .
[CrossRef] [PubMed]

A. Cerqueira S, F. Luan, C. M. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006), http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-926 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[CrossRef] [PubMed]

Other (1)

C. Martelli, P. Olivero, J. Canning, N. Groothoff, S. Prawer, S. Huntington, and B. Gibson, “Micromachining long period gratings in optical fibres using focussed ion beam,” OSA Topical Meeting: Bragg Gratings, Photosensitivity and Poling (BGPP 2007), Quebec City, Canada, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Process flow for the selective filling of PCF. (a) A PCF is coated with a thin layer of metal on the end facet; (b) FIB is used to mill microchannels into the end facet of the PCF; (c) The PCF is then spliced to an SMF; (d) The sample is immersed in a fluid for infiltration.

Fig. 2
Fig. 2

(a) SEM image of the milled microchannels (~5 µm deep and ~5 µm wide, with a 0.5 µm deep channel next to it) across the central air holes on the end facet of PCF, (b) close-up top-view and (c) side-view of the microchannel across the central air holes. (d) A microchannel ~5 µm deep and ~7 µm wide across a side-line of air holes on the PCF end facet.

Fig. 3
Fig. 3

(a) Microscope image of the spliced side-line sample; (b) SEM close-up view of the side-opening of the microchannel providing access to the desired air holes inside the PCF.

Fig. 4
Fig. 4

Microscope images of the central-line sample (a) and side-line sample (b) after cleaving of selectively infiltrated PCFs close to the splice.

Fig. 5
Fig. 5

Transmission spectra at 25°C (black), 30°C (red), 35°C (blue), and 40°C (purple) of the central-line sample infiltrated with 1.68-RI liquids.

Metrics