Abstract

Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from an Yb:fiber laser. The average beam quality factor of the dumped output was M 2 ~1.2 and the total relative-intensity noise was 8 mdBc, making the system a promising candidate for ultrafast laser inscription of infrared materials.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W. J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [CrossRef] [PubMed]
  2. For example, High-Q Laser, femtoNOVA SC-1040–500 product.
  3. For example, IMRA FCPA µJewel product, and Fianium High-Energy HE1060-fs products.
  4. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30(9), 964–966 (2005).
    [CrossRef] [PubMed]
  5. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29(10), 1111–1113 (2004).
    [CrossRef] [PubMed]
  6. F. Kienle, P. Siong Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
    [CrossRef] [PubMed]
  7. C. K. Min and T. Joo, “Near-infrared cavity-dumped femtosecond optical parametric oscillator,” Opt. Lett. 30(14), 1855–1857 (2005).
    [CrossRef] [PubMed]
  8. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17(16), 14229–14234 (2009).
    [CrossRef] [PubMed]
  9. T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
    [CrossRef] [PubMed]
  10. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
    [CrossRef]
  11. P. A. Bélanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16(4), 196–198 (1991).
    [CrossRef] [PubMed]

2010

T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
[CrossRef] [PubMed]

F. Kienle, P. Siong Teh, S.-U. Alam, C. B. E. Gawith, D. C. Hanna, D. J. Richardson, and D. P. Shepherd, “Compact, high-pulse-energy, picosecond optical parametric oscillator,” Opt. Lett. 35(21), 3580–3582 (2010).
[CrossRef] [PubMed]

2009

2008

2005

2004

1991

1965

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

Alam, S.-U.

Bélanger, P. A.

Brunner, F.

Burghoff, J.

Chen, W. J.

Eaton, S. M.

Gawith, C. B. E.

Hanna, D. C.

Herman, P. R.

Ho, S.

Innerhofer, E.

Ito, H.

Joo, T.

Keller, U.

Kienle, F.

Kitamura, K.

Kornaszewski, L.

Kurimura, S.

Lamour, T. P.

T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
[CrossRef] [PubMed]

T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17(16), 14229–14234 (2009).
[CrossRef] [PubMed]

Li, J.

Min, C. K.

Nejadmalayeri, A. H.

Ng, M. L.

Nolte, S.

Paschotta, R.

Reid, D. T.

T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
[CrossRef] [PubMed]

T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17(16), 14229–14234 (2009).
[CrossRef] [PubMed]

Richardson, D. J.

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

Shepherd, D. P.

Siong Teh, P.

Südmeyer, T.

Sun, J.

T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
[CrossRef] [PubMed]

Sun, J. H.

Tünnermann, A.

Usami, T.

Will, M.

Zhang, H.

J. Appl. Phys.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Rev. Sci. Instrum. 81(5), 053101 (2010).
[CrossRef] [PubMed]

Other

For example, High-Q Laser, femtoNOVA SC-1040–500 product.

For example, IMRA FCPA µJewel product, and Fianium High-Energy HE1060-fs products.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cavity layout: PG, pulse generator; LPF, low-pass filter; C, compressor; PD, photodiode; X, MgO:PPLN crystal; D, AOM cavity-dumper. See text for other definitions.

Fig. 2
Fig. 2

(a) Autocorrelation and (b) corresponding spectrum of the cavity-dumped signal pulses, recorded at a dumping frequency of 3.06 MHz. The best-fit autocorrelation envelope, shown as the dashed red line in (a), corresponds to the intensity (solid black lines) and phase (dashed green lines) profiles shown in (b) and (c). The results shown here were acquired from the dispersion-compensated OPO.

Fig. 3
Fig. 3

Signal pulse sequence measured after the output coupler at a dumping frequency of 154 kHz. The dumping efficiency is determined from the change in the signal before and after dumping (red arrow).

Fig. 4
Fig. 4

(a) Cavity dumped average power (blue triangles) and pulse energies (red circles) for dumping frequencies from 101 kHz – 3.83 MHz. (b) Cavity dumped peak power (blue triangles) and pulse energies (red circles) for the same dumping frequencies. In both figures the solid and dashed lines indicate, respectively, results obtained from the OPO operated with and without SF10 prisms for dispersion control.

Fig. 5
Fig. 5

(a) Horizontal and (b) vertical beam radius measurements (circles) and fit to an M 2-corrected Gaussian-beam propagation equation (solid lines), with M 2 = 1.26 (horizontal) and M 2 = 1.16 (vertical). The insets show horizontal and vertical waist radii of 11.3 µm and 10.9 µm respectively.

Fig. 6
Fig. 6

(a) Comparison of the RIN measured for the pump laser (blue) and the output coupled (T = 22%) OPO signal pulses (red) at the maximum average output power of 1.2 W. (b) Independent RIN measurement of the pump laser (blue) and comparison with the cavity-dumped (3.06 MHz) OPO signal pulses (red) at the maximum average output power of 1.1 W. On both graphs, the right axis shows the RIN integrated from high to low frequencies.

Metrics