Abstract

Abstract: In the last few years, there has been growing interest in the research of the polarizing optics consisting of sub-wavelength metamaterials due to the advantages of broad wavelength ranges, high temperature durability, and compact structures. So far, the metallic structure with the sub-wavelength metamaterials has been proved to achieve the linearly and the circularly polarized light. Therefore, there should be one question raised easily: Is it possible for the metallic structure with sub-wavelength metamaterials to generate the elliptically polarized light? To answer this question, we proposed a metallic structure with elliptically helical nanowires, and analyzed the polarization states of the transmitted light using FDTD method. It is confirmed that this metallic structure does have a giant elliptical dichroism. Furthermore, we also compared the distinct optical performances of elliptical single-, double-, three-, and four-helixes, and made a qualitative explanation for them.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, Optics (Addison-Wesley, San Francisco, 2002, 4th edition).
    [PubMed]
  2. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [CrossRef]
  3. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [CrossRef]
  4. J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
    [CrossRef] [PubMed]
  5. Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
    [CrossRef]
  6. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
    [CrossRef] [PubMed]
  7. C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
    [CrossRef]
  8. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  9. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [CrossRef] [PubMed]
  10. G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
    [CrossRef]
  11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
    [CrossRef] [PubMed]
  12. Z. Y. Yang, M. Zhao, and P. X. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?” Opt. Express 19(5), 4255–4260 (2011).
    [CrossRef] [PubMed]
  13. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39(10), 1549–1554 (2000).
    [CrossRef] [PubMed]
  14. A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
    [CrossRef]
  15. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22(12), 2635–2641 (2005).
    [CrossRef]
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  17. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
    [CrossRef]
  18. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  19. I. D. Rukhlenko, C. Dissanayake, and M. Premaratne, “Visualization of electromagnetic-wave polarization evolution using the Poincaré sphere,” Opt. Lett. 35(13), 2221–2223 (2010).
    [CrossRef] [PubMed]
  20. J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, New York, 2003, 3rd edition).

2011

2010

2009

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

2008

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

2007

Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15(15), 9510–9519 (2007).
[CrossRef] [PubMed]

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

2006

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

2005

2004

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

2000

1998

1994

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Albert, O.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Buonanno, M.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Burger, S.

Busch, K.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Chen, L.

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Chériaux, G.

Cottrell, D. M.

Dai, N. L.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

Davis, J. A.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Deng, J. D.

Deng, X. G.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Dissanayake, C.

Djurisic, A. B.

Elazar, J. M.

Essig, S.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Etchepare, J.

Gansel, J. K.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Harms, P.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Jian Jim, W.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Jullien, A.

Ko, W.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Kourtev, S.

Ledermann, A.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Lei, C.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Li, Y. H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

Linden, S.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, F.

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Liu, X. M.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Long, H.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

Lu, P. X.

Lu, Y. F.

Majewski, M. L.

McNamara, D. E.

Minkovski, N.

Mittra, R.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

Nienhuis, G.

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

Premaratne, M.

Rakic, A. D.

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rukhlenko, I. D.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Saltiel, S. M.

Sciortino, P.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Sonehara, T.

Staude, I.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Tai, S.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Taichenachev, A. V.

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

Thiel, M.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tumaikin, A. M.

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

von Freymann, G.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Walters, F.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

J. J. Wang, W. Zhang, X. G. Deng, J. D. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30(2), 195–197 (2005).
[CrossRef] [PubMed]

Wegener, M.

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[CrossRef] [PubMed]

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Xiaoming, L.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Xuegong, D.

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

Yang, G.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

Yang, Z. Y.

Yudin, V. I.

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

Zhang, W.

Zhao, M.

Adv. Funct. Mater.

G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, and M. Wegener, “Three-Dimensional Nanostructures for Photonics,” Adv. Funct. Mater. 20(7), 1038–1052 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu, F. Walters, and X. G. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[CrossRef]

C. Lei, W. Jian Jim, F. Walters, D. Xuegong, M. Buonanno, S. Tai, and L. Xiaoming, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Y. Yang, M. Zhao, N. L. Dai, G. Yang, H. Long, Y. H. Li, and P. X. Lu, “‘Broadband polarizers using dual-layer metallic nanowire grids,” IEEE Photon. Technol. Lett. 20(9), 697–699 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag.

P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antenn. Propag. 42(9), 1317–1324 (1994).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nienhuis, “Steady state of atoms in a resonant field with elliptical polarization,” Phys. Rev. A 69(3), 033410 (2004).
[CrossRef]

Science

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Other

E. Hecht, Optics (Addison-Wesley, San Francisco, 2002, 4th edition).
[PubMed]

J. D. Kraus and R. J. Marhefka, Antennas: for All Applications (McGraw-Hill, New York, 2003, 3rd edition).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the metallic structure consisting of elliptically helical nanowires.

Fig. 2
Fig. 2

(a) Optical performance of the elliptically single-helical metamaterials; (b) The polarization state of the transmitted LEP light represented on the Poincaré sphere.

Fig. 3
Fig. 3

Comparison of the optical performances of the elliptically double-, three- and four- helical nanowires metamaterials.

Fig. 4
Fig. 4

The polarization state of the transmitted LEP light represented on the Poincaré sphere. (a) Double-helix; (b) Three-helix; (c) Four-helix.

Fig. 5
Fig. 5

The schematic diagram of the inner interaction for elliptical multi-helix and the paths of currents

Tables (3)

Tables Icon

Table 1 Definitions of the metallic structure’s performance parameters

Tables Icon

Table 2 The polarization states of the transmitted LEP light

Tables Icon

Table 3 The polarization states of the transmitted light of the the structures with elliptically double-, three- and four-helical nanowires

Metrics