Abstract

This work presents a very simple yet effective way to obtain direct referencing of a quantum-cascade-laser at 4.3 μm to a near-IR frequency-comb. Precise tuning of the comb repetition-rate allows the quantum-cascade-laser to be scanned across absorption lines of a CO2 gaseous sample and line profiles to be acquired with extreme reproducibility and accuracy. By averaging over 50 acquisitions, line-centre frequencies are retrieved with an uncertainty of 30 kHz in a linear interaction regime. The extension of this methodology to other lines and molecules, by the use of widely tunable extended-cavity quantum-cascade-lasers, paves the way to a wide availability of high-quality and traceable spectroscopic data in the most crucial region for molecular detection and interrogation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
    [CrossRef] [PubMed]
  3. Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172(1), 69–79 (2009).
    [CrossRef]
  4. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  5. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
    [CrossRef] [PubMed]
  6. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
    [CrossRef]
  7. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
    [CrossRef]
  8. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-microm,” Opt. Express 16(11), 8242–8249 (2008).
    [CrossRef] [PubMed]
  9. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett. 30(9), 997–999 (2005).
    [CrossRef] [PubMed]
  10. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
    [CrossRef] [PubMed]
  11. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
    [CrossRef] [PubMed]
  12. M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hansch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
    [CrossRef] [PubMed]
  13. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett. 30(5), 570–572 (2005).
    [CrossRef] [PubMed]
  14. A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
    [CrossRef] [PubMed]
  15. J. Jiang, A. Onae, H. Matsumoto, and F. L. Hong, “Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control,” Opt. Express 13(6), 1958–1965 (2005).
    [CrossRef] [PubMed]
  16. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
    [CrossRef] [PubMed]
  17. A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008).
    [CrossRef] [PubMed]
  18. T. A. Johnson and S. A. Diddams, “Mid-IR Frequency Comb Upconversion Spectroscopy”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB11.
  19. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32(24), 3504–3506 (2007).
    [CrossRef] [PubMed]
  20. F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
    [CrossRef] [PubMed]
  21. S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
    [CrossRef]
  22. P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
    [CrossRef]
  23. G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
    [CrossRef] [PubMed]
  24. A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31(20), 3040–3042 (2006).
    [CrossRef] [PubMed]

2010 (3)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

2009 (1)

Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172(1), 69–79 (2009).
[CrossRef]

2008 (2)

2007 (5)

2006 (1)

2005 (4)

2004 (3)

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Adler, F.

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Amy-Klein, A.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Barbieri, S.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Bartalini, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[CrossRef] [PubMed]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Beere, H.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Biegert, J.

Borri, S.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[CrossRef] [PubMed]

Cancio, P.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Casa, G.

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

Castrillo, A.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31(20), 3040–3042 (2006).
[CrossRef] [PubMed]

Chardonnet, C.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Colombelli, R.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Daussy, C.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

De Natale, P.

De Tommasi, E.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Ding, L.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Erny, C.

Faist, J.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31(20), 3040–3042 (2006).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Foreman, S. M.

Gaal, P.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[CrossRef]

Gagliardi, G.

Galli, I.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[CrossRef] [PubMed]

Gambetta, A.

Gellie, P.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Gianfrani, L.

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[CrossRef] [PubMed]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31(20), 3040–3042 (2006).
[CrossRef] [PubMed]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Giusfredi, G.

Gohle, C.

Goncharov, A.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Grain, C.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Gubin, M. A.

Guinet, M.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Hansch, T. W.

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172(1), 69–79 (2009).
[CrossRef]

M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hansch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Hong, F. L.

Huber, R.

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Ippen, E. P.

Jiang, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Kärtner, F. X.

Keller, U.

Kühlke, D.

Leitenstorfer, A.

Leveque, T.

Lopez, O.

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Maddaloni, P.

Maineult, W.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Malara, P.

Marangoni, M.

Marian, A.

Matsumoto, H.

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Mazzotti, D.

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Moutzouris, K.

Mücke, O. D.

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Onae, A.

Parretta, D. A.

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

Petrukhin, E. A.

Prevedelli, M.

Ramponi, R.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Raschke, M. B.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[CrossRef]

Reimann, K.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[CrossRef]

Ritchie, D.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

Santarelli, G.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Sell, A.

Shelkovnikov, A.

Sirigu, L.

Sirtori, C.

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sotier, F.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Tauser, F.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172(1), 69–79 (2009).
[CrossRef]

M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hansch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Wehr, R.

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Woerner, M.

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[CrossRef]

Wong, F. N. C.

Ye, J.

Zimmermann, M.

Appl. Phys. B (1)

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28-THz spectral region with a femtosecond laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B 78(1), 25–30 (2004).
[CrossRef]

Eur. Phys. J. Spec. Top. (1)

Th. Udem, R. Holzwarth, and T. W. Hansch, “Femtosecond optical frequency combs,” Eur. Phys. J. Spec. Top. 172(1), 69–79 (2009).
[CrossRef]

J. Chem. Phys. (1)

G. Casa, D. A. Parretta, A. Castrillo, R. Wehr, and L. Gianfrani, “Highly accurate determinations of CO2 line strengths using intensity-stabilized diode laser absorption spectrometry,” J. Chem. Phys. 127(8), 084311 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

S. Barbieri, P. Gellie, G. Santarelli, L. Ding, W. Maineult, C. Sirtori, R. Colombelli, H. Beere, and D. Ritchie, “Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser,” Nat. Photonics 4(9), 636–640 (2010).
[CrossRef]

P. Gaal, M. B. Raschke, K. Reimann, and M. Woerner, “Measuring optical frequencies in the 0–40 THz range with non-synchronized electro–optic sampling,” Nat. Photonics 1(10), 577–580 (2007).
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (10)

C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, “Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source,” Opt. Lett. 32(9), 1138–1140 (2007).
[CrossRef] [PubMed]

A. Gambetta, R. Ramponi, and M. Marangoni, “Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator,” Opt. Lett. 33(22), 2671–2673 (2008).
[CrossRef] [PubMed]

S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, and L. Gianfrani, “Frequency-comb-referenced quantum-cascade laser at 4.4 microm,” Opt. Lett. 32(8), 988–990 (2007).
[CrossRef] [PubMed]

M. Zimmermann, C. Gohle, R. Holzwarth, Th. Udem, and T. W. Hansch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29(3), 310–312 (2004).
[CrossRef] [PubMed]

S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mücke, F. N. C. Wong, E. P. Ippen, and F. X. Kärtner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett. 30(5), 570–572 (2005).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, M. Guinet, C. Daussy, O. Lopez, A. Shelkovnikov, and C. Chardonnet, “Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation,” Opt. Lett. 30(24), 3320–3322 (2005).
[CrossRef] [PubMed]

D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, and M. Prevedelli, “Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer,” Opt. Lett. 30(9), 997–999 (2005).
[CrossRef] [PubMed]

F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, “Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser,” Opt. Lett. 32(24), 3504–3506 (2007).
[CrossRef] [PubMed]

F. Tauser, F. Adler, and A. Leitenstorfer, “Widely tunable sub-30-fs pulses from a compact erbium-doped fiber source,” Opt. Lett. 29(5), 516–518 (2004).
[CrossRef] [PubMed]

A. Castrillo, E. De Tommasi, L. Gianfrani, L. Sirigu, and J. Faist, “Doppler-free saturated-absorption spectroscopy of CO2 at 4.3 microm by means of a distributed feedback quantum cascade laser,” Opt. Lett. 31(20), 3040–3042 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, and P. De Natale, “Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit,” Phys. Rev. Lett. 104(8), 083904 (2010).
[CrossRef] [PubMed]

Science (3)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature,” Science 295(5553), 301–305 (2002).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–640 (2000).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[CrossRef]

Other (1)

T. A. Johnson and S. A. Diddams, “Mid-IR Frequency Comb Upconversion Spectroscopy”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Nonlinear schemes for comb-referencing of a MIR cw laser. (a) Down-conversion of the near-IR comb through difference-frequency-generation (DFG). (b) Up-conversion of the probing laser through sum-frequency-generation (SFG). Comb 1 and comb2 represent a pair of phase-coherent NIR frequency combs.

Fig. 2
Fig. 2

Experimental spectra involved in comb-referencing of a MIR cw laser. (a) Examples of phase-coherent spectra achievable from a dual-branch Er-fiber laser: main output at 1.55 μm (red line) and SC output (coloured lines at shorter wavelengths), together with their frequency difference (horizontal arrows and corresponding labels). (b) Spectrum (light blue) resulting from SFG between QCL (not reported in the figure) and main oscillator output (red line), together with the SC spectrum used for the beating (dark blue), as situated 70 THz far apart the main Erbium output.

Fig. 3
Fig. 3

Experimental apparatus. D: diaphragm, DM: dichroic mirror, PAR: 90° off-axis parabolic mirror, PPLN: periodically-poled lithium niobate, P: prism, PC: personal computer, PD: amplified InGaAs photo-detector, MCT: Peltier.cooled mercury-cadmium-telluride detector, TCO2: cell transmittance; frep = variable laser repetition frequency, as set by PC, frep’ = actual laser rep-rate, as made to coincide with frep by frep-Servo, fbeat: offset frequency used for stabilization of the beating note.

Fig. 4
Fig. 4

Electrical spectrum of the beat-note between comb and QCL. Main panel: phase-locked conditions, 300 kHz resolution bandwidth, 10 kHz video-bandwidth and 20-spectra averaging. Inset: free-running beating, 300 kHz resolution bandwidth, 300 kHz video-bandwidth and 3-spectra averaging.

Fig. 5
Fig. 5

Absorption profiles and line-centre frequencies of a CO2 gas sample. (a) CO2 absorption spectra at a pressure of 7.3 Torr, resulting from a wide scan of the laser rep-rate (bottom scale) and thus of the QCL absolute frequency. The violet and red lines represent two independent measurements, to be referred to the left and right vertical scale, respectively. Dots represent line-centre frequencies and transmitted signals calculated from the HITRAN database for the observed transitions. (b) 5-fold averaged absorption profile of the P15f line of the main CO2 isotopologue (blue line), as obtained from repeated narrower scans (4-kHz wide with 4000 points). The fitting curve (yellow line) was calculated with a Voigt convolution. The residuals of the fitting are highlighted in the bottom part of the panel. (c) Table giving the line-centre frequencies of all investigated lines, from HITRAN and from a multi-line least-squares fitting procedure of the entire CAFS experimental absorption spectrum. Only the significant digits, that is the ones falling within the uncertainty range, are reported for the two sets. For the HITRAN frequencies this range is ± 30 MHz, corresponding to ± 0.001 cm−1, while for the measured set it scales from a minimum of ± 227 kHz (~ ± 0.000007 cm−1) for the most intense lines (~91% absorption) to about 11 MHz (~ ± 0.0004 cm−1) for the less intense ones (<1.8% absorption).

Fig. 6
Fig. 6

Dispersion of the retrieved line-centre frequencies. Each point identifies one out of the 50 independent measurements on the P15f line of the main CO2 isotopologue at a pressure of 7.3 Torr.

Metrics