Abstract

Wafer-level optics is considered as a cost-effective approach to miniaturized cameras, because fabrication and assembly are carried out for thousands of lenses in parallel. However, in most cases the micro-optical fabrication process is not mature enough to reach the required accuracy of the optical elements, which may have complex profiles and sags in the mm-scale. Contrary, the creation of microlens arrays is well controllable so that we propose a multi aperture system called ”Optical Cluster Eye” which is based on conventional micro-optical fabrication techniques. The proposed multi aperture camera consists of many optical channels each transmitting a segment of the whole field of view. The design of the system provides the stitching of the partial images, so that a seamless image is formed and a commercially available image sensor can be used. The system can be fabricated on wafer-level with high yield due to small aperture diameters and low sags. The realized optics has a lateral size of 2.2 × 2.9 mm 2, a total track length of 1.86 mm, and captures images at VGA video resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18, 477–484 (1997).
    [CrossRef]
  2. M. Kawazu and Y. Ogura, “Application of gradient-index fiber arrays to copying machines,” Appl. Opt. 19, 1105–1112 (1980).
    [CrossRef] [PubMed]
  3. N. F. Borrelli, R. H. Bellman, J. A. Durbin, and W. Lama, “Imaging and radiometric properties of microlens arrays,” Appl. Opt. 30, 3633–3642 (1991).
    [CrossRef] [PubMed]
  4. D. Gabor, UK Patent 541753 (1940).
  5. M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
    [CrossRef]
  6. C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
    [CrossRef]
  7. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The gabor superlens as an alternative waferlevel camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17, 15747–15759 (2009).
    [CrossRef] [PubMed]
  8. A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE 7930, 79300D (2011).
    [CrossRef]
  9. R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
    [CrossRef]
  10. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13, 889–903 (2005).
    [CrossRef] [PubMed]
  11. G. Druart, N. Guérineau, R. Haïdar, S. Thétas, J. Taboury, S. Rommeluère, J. Primot, and M. Fendler, “Demonstration of an infrared microcamera inspired by xenos peckii vision,” Appl. Opt. 48, 3368–3374 (2009).
    [CrossRef] [PubMed]
  12. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18, 24379–24394 (2010).
    [CrossRef] [PubMed]
  13. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, 1990).
  14. J. Duparré, D. Radtke, and P. Dannberg, “Implementation of field lens arrays in beam-deflecting microlens array telescopes,” Appl. Opt. 43, 4854–4861 (2004).
    [CrossRef] [PubMed]
  15. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).
    [CrossRef]
  16. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13, 10539–10551 (2005).
    [CrossRef] [PubMed]
  17. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE 4179, 137–145 (2000).
    [CrossRef]
  18. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  19. S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
    [CrossRef]
  20. OmniVision: OVM7690; 640 × 480 CameraCube™ device; product brief, Version 1.0 (September2010).

2011 (1)

A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE 7930, 79300D (2011).
[CrossRef]

2010 (1)

2009 (2)

2005 (2)

2004 (1)

2003 (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

2002 (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).
[CrossRef]

2000 (1)

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

1998 (1)

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
[CrossRef]

1997 (1)

1994 (1)

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

1993 (1)

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

1991 (1)

1988 (1)

1980 (1)

Anderson, R. H.

Bellman, R. H.

Borrelli, N. F.

Bräuer, A.

Brückner, A.

Connell, G. A. N.

Dannberg, P.

Druart, G.

Duparré, J.

Durbin, J. A.

Eisner, M.

Fendler, M.

Gabor, D.

D. Gabor, UK Patent 541753 (1940).

Garza-Rivera, A.

A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE 7930, 79300D (2011).
[CrossRef]

Guérineau, N.

Haïdar, R.

Haselbeck, S.

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Hembd-Sölner, C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
[CrossRef]

Hunt, R.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Hutley, M. C.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
[CrossRef]

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Kawazu, M.

Lama, W.

Leitel, R.

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).
[CrossRef]

Mann, G.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Matthes, A.

Ogura, Y.

Popovic, Z. D.

Primot, J.

Pshenay-Severin, E.

Radtke, D.

Reimann, A.

Renero-Carrillo, F. J.

A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE 7930, 79300D (2011).
[CrossRef]

Rommeluère, S.

Savander, P.

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Scharf, T.

Schreiber, H.

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Schreiber, P.

Schwider, J.

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, 1990).

Sprague, R. A.

Stevens, R. F.

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
[CrossRef]

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Stollberg, K.

Streibl, N.

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Taboury, J.

Thétas, S.

Tünnermann, A.

Völkel, R.

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Weible, K. J.

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Wippermann, F.

Appl. Opt. (6)

J. Opt. A: Pure Appl. Opt. (2)

C. Hembd-Sölner, R. F. Stevens, and M. C. Hutley, “Imaging properties of the gabor superlens,” J. Opt. A: Pure Appl. Opt. 1, 94–102 (1998).
[CrossRef]

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A: Pure Appl. Opt. 4, 1–9 (2002).
[CrossRef]

Microelectron. Eng. (1)

R. Völkel, M. Eisner, and K. J. Weible, “Miniaturized imaging systems,” Microelectron. Eng. 67–68, 461–472 (2003).
[CrossRef]

Opt. Eng. (1)

S. Haselbeck, H. Schreiber, J. Schwider, and N. Streibl, “Microlenses fabricated by melting a photoresist on a base layer,” Opt. Eng. 32, 1322–1324 (1993).
[CrossRef]

Opt. Express (4)

Proc. SPIE (2)

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and OlE-integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

A. Garza-Rivera and F. J. Renero-Carrillo, “Design of an ultra-thin objective lens based on superposition compound eye,” Proc. SPIE 7930, 79300D (2011).
[CrossRef]

Pure Appl. Opt. (1)

M. C. Hutley, R. Hunt, R. F. Stevens, and P. Savander, “The moiré magnifier,” Pure Appl. Opt. 3, 133–142 (1994).
[CrossRef]

Other (3)

D. Gabor, UK Patent 541753 (1940).

W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, 1990).

OmniVision: OVM7690; 640 × 480 CameraCube™ device; product brief, Version 1.0 (September2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Working principle of the Optical Cluster Eye system.

Fig. 2
Fig. 2

Principle scheme of the paraxial optical model of the oCLEY and notation of the parameters.

Fig. 3
Fig. 3

Layout of the designed oCLEY and top view of the non-central apertures and lenses. The first and the fourth microlens array include toroidal lenses. The second aperture is the field aperture, which defines the partial image size.

Fig. 4
Fig. 4

(a) Simulated quarter of a star pattern image. (b) MTF of the simulated oCLEY plotted against the field angle in the sagittal and tangential direction for half (111 cycles/mm) and for a quarter of the Nyquist frequency (55.5 cycles/mm).

Fig. 5
Fig. 5

Technologies used for the fabrication of the microlens and aperture arrays and the given accuracy of the different process steps.

Fig. 6
Fig. 6

Assembled Optical Cluster Eye system compared to a pin.

Fig. 7
Fig. 7

(a) Experimental and simulated MTF plotted against the spatial frequency for the on-axis position and for 70 % of the field of view. (b) Experimental and simulated MTF as a function of the object distance for half (111 cycles/mm) and for a quarter of the Nyquist frequency (55.5 cycles/mm).

Fig. 8
Fig. 8

(a) Position of the edge for measuring the maximum offset between adjacent partial images. (b) Unprocessed oCLEY image of a white test target. Along the marked cross section the illumination distribution was analyzed.

Fig. 9
Fig. 9

Normalized relative illumination of the camera system plotted against the field angle. The plot shows the simulated curve A and two experimental determined curves (B and C) for different configurations. For curve B a white diffuse LED was used as test target and imaged with the image sensor. Curve C was measured with the same test target as curve B but now the image was not captured with the image sensor but was relayed on a high-resolution camera for being able to analyze the influence of the image sensor on the illumination distribution.

Fig. 10
Fig. 10

(Color online) Test targets imaged with the oCLEY prototype. (a) Unprocessed star pattern array. (b) Star pattern array (using FFC). (c) Image processing Lena (using FFC). (d) Ceiling painting (using FFC). (e) Swimmer (using FFC).

Tables (3)

Tables Icon

Table 1 Parameters of the MLAs of the Designed oCLEY a

Tables Icon

Table 2 Maximum Distortion per Partial Image for Three Different Positions in the Field of View a

Tables Icon

Table 3 Comparison of Different Parameters of the Here Shown oCLEY System, the Prior Cluster Eye System [10] and a Commercial Single Aperture Wafer-Level Camera System (OVM7690 CameraCube, OmniVision, [20]) a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( h o u t α o u t 1 ) = M s y s ( h i n α i n 1 ) , M s y s = ( M 11 M 12 Δ x M 21 M 22 Δ ϕ 0 0 1 )
M 11 = 0
M 13 = 0

Metrics