Abstract

We report an efficiency-enhanced mid-infrared generation via optical parametric down conversion. A tandem periodically-poled MgO-doped stoichiometric lithium tantalate crystal is used to realize on-chip generation and amplification of mid-infrared radiation inside an optical parametric oscillator cavity. We achieved 21.2% conversion efficiency (24% slope efficiency), which is among the highest efficiencies for the pump-to-mid-infrared conversion, with 1064 nm Nd class laser pump. The maximum average output power at 3.87μm reached 635 mW with a 3.0 W pump.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).
  2. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
    [CrossRef] [PubMed]
  3. M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing,” Opt. Lett. 23(10), 759–761 (1998).
    [CrossRef] [PubMed]
  4. J. M. Fraser and C. Ventalon, “Parametric cascade downconverter for intense ultrafast mid-infrared generation beyond the Manley-Rowe limit,” Appl. Opt. 45(17), 4109–4113 (2006).
    [CrossRef] [PubMed]
  5. K. Koch, G. T. Moore, and E. C. Cheungy, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12(11), 2268–2273 (1995).
    [CrossRef]
  6. G. T. Moore and K. Koch, “Efficient High-Gain Two-Crystal Optical Parametric Oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
    [CrossRef]
  7. A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
    [CrossRef]
  8. K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000).
    [CrossRef]
  9. J. M. Fukumoto, H. Komine, W. H. Long, Jr., and E. A. Stappaerts, “Periodically Poled LiNbO3 Optical Parametric Oscillator with Intracavity Difference Frequency Mixing,” in: W. R. Bosenberg, M. M. Fejer (Eds.), Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series, 19, 245–248 (1998).
  10. H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
    [CrossRef]
  11. G. Porat, O. Gayer, and A. Arie, “Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion,” Opt. Lett. 35(9), 1401–1403 (2010).
    [CrossRef] [PubMed]
  12. N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
    [CrossRef]
  13. W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
    [CrossRef]
  14. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
    [CrossRef]
  15. X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

2007 (1)

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

2006 (2)

R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).

J. M. Fraser and C. Ventalon, “Parametric cascade downconverter for intense ultrafast mid-infrared generation beyond the Manley-Rowe limit,” Appl. Opt. 45(17), 4109–4113 (2006).
[CrossRef] [PubMed]

2004 (3)

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

2000 (1)

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000).
[CrossRef]

1998 (1)

1995 (3)

K. Koch, G. T. Moore, and E. C. Cheungy, “Optical parametric oscillation with intracavity difference-frequency mixing,” J. Opt. Soc. Am. B 12(11), 2268–2273 (1995).
[CrossRef]

G. T. Moore and K. Koch, “Efficient High-Gain Two-Crystal Optical Parametric Oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Arie, A.

Berrou, A.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Cheungy, E. C.

Dearborn, M. E.

Diels, J. C.

Fan, Y. X.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

Fraser, J. M.

Gayer, O.

Ge, C. G.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Godard, A.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Guo, H. C.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

Guoguang, R.

R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).

He, J. L.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Hu, X. P.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

Kitamura, K.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Koch, K.

Kurimura, S.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Lefebvre, M.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Li, D.

Liu, Y. W.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

McEwan, K. J.

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000).
[CrossRef]

Melkonian, J.-M.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Ming, N. B.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Moore, G. T.

Nakamura, M.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Nomura, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Otani, Y.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Peng, Y.

Porat, G.

Qin, Y. Q.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

Raybaut, M.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Rosencher, E.

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Sakuma, J.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Shen, Z. X.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

Shiratori, A.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Tang, S. H.

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

Terry, J. A. C.

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000).
[CrossRef]

Ventalon, C.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Wang, H. T.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

Wang, W.

Wang, X.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

Wei, X.

Weng, W. L.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Yu, N. E.

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

Yunian, H.

R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).

Zhang, X. Q.

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Zhu, S. N.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Zhu, Y. Y.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. E. Yu, S. Kurimura, Y. Nomura, M. Nakamura, K. Kitamura, J. Sakuma, Y. Otani, and A. Shiratori, “Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation,” Appl. Phys. Lett. 84(10), 1662–1664 (2004).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85(2), 188–190 (2004).
[CrossRef]

C. R. Phys. (1)

A. Berrou, J.-M. Melkonian, M. Raybaut, A. Godard, E. Rosencher, and M. Lefebvre, “Specific architectures for optical parametric oscillators,” C. R. Phys. 8(10), 1162–1173 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

W. L. Weng, Y. W. Liu, and X. Q. Zhang, “Temperature-Dependent Sellmeier Equation for 1.0 mol% Mg-Doped Stoichiometric Lithium Tantalate,” Chin. Phys. Lett. 25(12), 4303–4306 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. T. Moore and K. Koch, “Efficient High-Gain Two-Crystal Optical Parametric Oscillator,” IEEE J. Quantum Electron. 31(5), 761–768 (1995).
[CrossRef]

J. Appl. Phys. (1)

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77(10), 5481–5483 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

H. C. Guo, Y. Q. Qin, Z. X. Shen, and S. H. Tang, “Mid-infrared radiation in an aperiodically poled LiNbO3 superlattice induced by cascaded parametric processes,” J. Phys. Condens. Matter 16(47), 8465–8473 (2004).
[CrossRef]

Laser Infrared (1)

R. Guoguang and H. Yunian, “Laser-based IRCM system defenses for military and commercial aircraft,” Laser Infrared 36, 1–6 (2006).

Opt. Commun. (1)

K. J. McEwan and J. A. C. Terry, “A tandem periodically-poled lithium niobate (PPLN) optical parametric oscillator (OPO),” Opt. Commun. 182(4-6), 423–432 (2000).
[CrossRef]

Opt. Lett. (3)

Other (1)

J. M. Fukumoto, H. Komine, W. H. Long, Jr., and E. A. Stappaerts, “Periodically Poled LiNbO3 Optical Parametric Oscillator with Intracavity Difference Frequency Mixing,” in: W. R. Bosenberg, M. M. Fejer (Eds.), Advanced Solid State Lasers, OSA Trends in Optics and Photonics Series, 19, 245–248 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The calculated phase-matching curves for the OPO and OPA processes.

Fig. 2
Fig. 2

Schematic of the experiment setup.

Fig. 3
Fig. 3

Measured mid-IR output power of the single OPO and the OPO-OPA versus pump power at 120 ° C .

Fig. 4
Fig. 4

Normalized output power for ω s 2 as a function of temperature.

Fig. 5
Fig. 5

Output spectrum at 120 ° C for the OPO-OPA device. The spectrum range is limited from 350 nm to 1750 nm by the spectrum analyzer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ k O P O = k p k s k i G O P O = 0
Δ k O P A = k s k s 2 k i G O P A = 0
OPO : 1.064 μ m 1.47 μ m + 3.87 μ m
OPA : 1.47 μ m 3.87 μ m + 2.37 μ m
d A p ( z ) d z = i κ O P O A s ( z ) A i ( z ) d A s ( z ) d z = i κ O P O A p ( z ) A i * ( z ) + i κ O P A A i ( z ) A s 2 ( z ) d A i ( z ) d z = i κ O P O A p ( z ) A s * ( z ) + i κ O P A A s ( z ) A s 2 * ( z ) d A s 2 ( z ) d z = i κ O P A A s ( z ) A i * ( z )
g = κ O P A | E s |

Metrics