Abstract

We present analytical theory of dissipative soliton absorption spectroscopy. A dissipative soliton formed in an all-normal-dispersion oscillator with a narrowband intracavity absorber acquires spectral features that follow the index of refraction of the absorber, as confirmed by numerical simulations and experimental evidence. In contrast to the soliton absorption spectroscopy in an anomalous dispersion regime, we anticipate resonant enhancement of a modulation signal near the pulse spectrum edges that results in an additional signal gain. We further show that the pulse acquires a nanosecond-long tail in the time domain and provide simple formula for estimation of its energy content.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171 (1999).
    [CrossRef]
  2. V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
    [CrossRef]
  3. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
    [CrossRef] [PubMed]
  4. Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, Eds. (Springer-Verlag, 2008).
    [CrossRef]
  5. V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
    [CrossRef]
  6. I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked cr:znse laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
    [PubMed]
  7. R. Böhm, A. Stephani, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with a Nd3+-doped fiber laser,” Opt. Lett. 18, 1955–1957 (1993).
    [CrossRef] [PubMed]
  8. Yu. O. Barmenkov, A. Ortigosa-Blanch, A. Diez, J. L. Cruz, and M. V. Andrés, “Time-domain fiber laser hydrogen sensor,” Opt. Lett. 29, 2461–2463 (2004).
    [CrossRef] [PubMed]
  9. A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
    [CrossRef]
  10. J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
    [PubMed]
  11. V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
    [PubMed]
  12. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
    [CrossRef]
  13. V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
    [CrossRef]
  14. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29, 1366–1368 (2004).
    [CrossRef] [PubMed]
  15. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtoseond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  16. V. L. Kalashnikov, “Chirped dissipative solitons,” Nonlinear Dynamics and Applications, vol. 16, L. F. Babichev and V. I. Kuvshinov, Eds., pp. 58–67 (Minsk, 2010) (also arXiv:1001.4918 [physics.optics]).
  17. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  18. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005).
    [CrossRef]
  19. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
    [CrossRef]
  20. V. L. Kalashnikov, Maple 13 computer algebra worksheet, http://info.tuwien.ac.at/kalashnikov/NCGLE1.html
  21. V. L. Kalashnikov, Maple 14 computer algebra worksheet, http://info.tuwien.ac.at/kalashnikov/perturb2.html
  22. V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E 80, 046606 (2009).
    [CrossRef]
  23. V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007).
    [CrossRef]
  24. V. L. Kalashnikov, “Dissipative solitons: perturbations and chaos formation,” Chaos Theory. Modeling, Simulation and Applications: Selected Papers from the 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Ch.H. Skiadas, I. Dimotikalis, and Ch. Skiadas, Eds., pp. 199–206 (World Scientific Publishing Company, 2011) (also arXiv:1006.2223 [physics.optics]).
    [CrossRef]
  25. E. Sorokin and I. T. Sorokina “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” paper CF1.3-WED at CLEO/Europe 2009.

2010 (1)

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

2009 (2)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E 80, 046606 (2009).
[CrossRef]

2007 (3)

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

2006 (2)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtoseond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

2005 (2)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

2004 (2)

2003 (1)

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

1999 (1)

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171 (1999).
[CrossRef]

1993 (1)

Akhmediev, N. N.

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

Akimov, V. A.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Andrés, M. V.

Ankiewicz, A.

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

Apolonski, A.

Baev, V. M.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171 (1999).
[CrossRef]

R. Böhm, A. Stephani, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with a Nd3+-doped fiber laser,” Opt. Lett. 18, 1955–1957 (1993).
[CrossRef] [PubMed]

Barmenkov, Yu. O.

Böhm, R.

Buckley, J.

Carrig, T.

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked cr:znse laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[PubMed]

Chernykh, A.

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[CrossRef]

Chong, A.

Correiaa, L.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Cruz, J. L.

Diez, A.

Fernandez, A.

Frolov, M. P.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Fuji, T.

Fürbach, A.

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

Kalashnikov, V. L.

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E 80, 046606 (2009).
[CrossRef]

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005).
[CrossRef]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

V. L. Kalashnikov, “Chirped dissipative solitons,” Nonlinear Dynamics and Applications, vol. 16, L. F. Babichev and V. I. Kuvshinov, Eds., pp. 58–67 (Minsk, 2010) (also arXiv:1001.4918 [physics.optics]).

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

V. L. Kalashnikov, “Dissipative solitons: perturbations and chaos formation,” Chaos Theory. Modeling, Simulation and Applications: Selected Papers from the 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Ch.H. Skiadas, I. Dimotikalis, and Ch. Skiadas, Eds., pp. 199–206 (World Scientific Publishing Company, 2011) (also arXiv:1006.2223 [physics.optics]).
[CrossRef]

Korostelin, Yu. V.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Kozlovskii, V. I.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Krausz, F.

Landman, A. I.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Larsenb, C.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171 (1999).
[CrossRef]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

Ortigosa-Blanch, A.

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[CrossRef]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005).
[CrossRef]

Podmar’kov, Yu. P.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

Poppe, A.

Renninger, W.

Salewskia, S.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Sorokin, E.

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

E. Sorokin and I. T. Sorokina “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” paper CF1.3-WED at CLEO/Europe 2009.

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked cr:znse laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[PubMed]

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

Sorokina, I. T.

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, “Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser,” Opt. Express 15, 16540–16545 (2007).
[CrossRef] [PubMed]

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked cr:znse laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[PubMed]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

E. Sorokin and I. T. Sorokina “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” paper CF1.3-WED at CLEO/Europe 2009.

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

Starka, A.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Stephani, A.

Teichmanna, M.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Toschek, P. E.

Toscheka, P. E.

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Voronov, A. A.

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

Wise, F.

Appl. Phys. B (2)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171 (1999).
[CrossRef]

JETP Lett. (1)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulses in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” JETP Lett. 82, 467–471 (2005).
[CrossRef]

Nat. Photonics (1)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[CrossRef]

Opt. Commun. (1)

A. Starka, L. Correiaa, M. Teichmanna, S. Salewskia, C. Larsenb, V. M. Baev, and P. E. Toscheka, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun. 215, 113–123 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

V. L. Kalashnikov and E. Sorokin, “Soliton absorption spectroscopy,” Phys. Rev. A 81, 033840 (2010).
[CrossRef]

V. L. Kalashnikov and A. Chernykh, “Spectral anomalies and stability of chirped-pulse oscillators,” Phys. Rev. A 75, 033820 (2007).
[CrossRef]

Phys. Rev. E (1)

V. L. Kalashnikov, “Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation,” Phys. Rev. E 80, 046606 (2009).
[CrossRef]

Quantum Electron. (2)

V. A. Akimov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Spectral dynamics of intracavity absorption in a pulsed Cr2+:ZnSe laser,” Quantum Electron. 35, 425–428 (2005).
[CrossRef]

V. A. Akimov, A. A. Voronov, V. I. Kozlovskii, Yu. V. Korostelin, A. I. Landman, Yu. P. Podmar’kov, and M. P. Frolov, “Intracavity laser spectroscopy by using a Fe2+:ZnSe laser,” Quantum Electron. 37, 1071–1075 (2007).
[CrossRef]

Other (10)

I. T. Sorokina, E. Sorokin, and T. Carrig, “Femtosecond pulse generation from a SESAM mode-locked cr:znse laser,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMQ2.
[PubMed]

J. Mandon, G. Guelachvili, E. Sorokin, I. T. Sorokina, V. L. Kalashnikov, and N. Picqué, “Enhancement of molecular dispersion spectral signatures in mode-locked lasers,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper WEoB.4.
[PubMed]

V. L. Kalashnikov, E. Sorokin, J. Mandon, N. Picqué, G. Guelachvili, and I. T. Sorokina, “Femtosecond lasers for intracavity molecular spectroscopy,” in EPS-QEOD Europhoton Conference on Solid-state, Fiber and Waveguide Light Sources, Abstract Volume 32G (CD) (Paris, France, 2008), paper TUoA.3.
[PubMed]

V. L. Kalashnikov, “Chirped dissipative solitons,” Nonlinear Dynamics and Applications, vol. 16, L. F. Babichev and V. I. Kuvshinov, Eds., pp. 58–67 (Minsk, 2010) (also arXiv:1001.4918 [physics.optics]).

N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).

V. L. Kalashnikov, “Dissipative solitons: perturbations and chaos formation,” Chaos Theory. Modeling, Simulation and Applications: Selected Papers from the 3rd Chaotic Modeling and Simulation International Conference (CHAOS2010), Ch.H. Skiadas, I. Dimotikalis, and Ch. Skiadas, Eds., pp. 199–206 (World Scientific Publishing Company, 2011) (also arXiv:1006.2223 [physics.optics]).
[CrossRef]

E. Sorokin and I. T. Sorokina “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” paper CF1.3-WED at CLEO/Europe 2009.

Mid-Infrared Coherent Sources and Applications, M. Ebrahim-Zadeh and I. T. Sorokina, Eds. (Springer-Verlag, 2008).
[CrossRef]

V. L. Kalashnikov, Maple 13 computer algebra worksheet, http://info.tuwien.ac.at/kalashnikov/NCGLE1.html

V. L. Kalashnikov, Maple 14 computer algebra worksheet, http://info.tuwien.ac.at/kalashnikov/perturb2.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The unperturbed CDS spectra corresponding to Eq. (5) and to parameters in the Table 1. The positive (negative) branch is shown by a solid (dashed) line.

Fig. 2
Fig. 2

The perturbed CDS spectra for the negative branch CDS and the parameters of Table 1. A single absorption line with ɛ 1 =−0.0025, ω 1 = 0, and Ω1 = 1 GHz contributes. Solid red curve corresponds to contribution of f 0 (ω) in Eq. (17), open black circles correspond to contribution of f 1 (ω) under the assumption Eq. (16), and blue crosses show f 1 (ω) without the assumption Eq. (16).

Fig. 3
Fig. 3

The scaled-down perturbed CDS spectra corresponding to those in Fig. 2.

Fig. 4
Fig. 4

Perturbed spectra obtained from the zero-order approximation of Eq. (17) (a), and from the numerical simulations of the Eq. (1) (b). Six identical absorption lines are considered, with ɛl =−0.0025 and Ω l = 1 GHz. Simulation parameters correspond to those in Table 1.

Fig. 5
Fig. 5

Numerical spectrum for ɛl =−0.0025 and Ω l = 1 GHz and another parameters described in Table 1.

Fig. 6
Fig. 6

Kerr-lens mode-locked Cr:ZnSe laser in normal dispersion regime. (a) Round-trip dispersion and output spectrum (note that the GDD curve presented here corrects the data of Ref. [25] by accounting for the mirrors’ dispersion.) The round-trip transmission of the atmosphere (HITRAN) is shown in blue. (b) The autocorrelation trace of the chirped pulse.

Fig. 7
Fig. 7

Modulation signal due to the atmospheric water-vapour lines in the Cr:ZnSe laser, central part expanded. The percentage marks show the peak line absorption (2ɛlL) and signal amplitude (2ɛl /βΔ2) between the peaks at ω = Ω l ± ωl .

Tables (1)

Tables Icon

Table 1 Basic Parameters for Numerical Simulations

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

a ( z , t ) z = σ a ( z , t ) + ( α + i β ) 2 t 2 a ( z , t ) + [ κ ( 1 ζ P ( z , t ) ) i γ ] P ( z , t ) a ( z , t ) + Π ^ [ a ] ,
a ( z , t ) = P ( t ) exp [ i ( ϕ ( t ) q z ) ] ,
e ( ω ) 6 π B Ξ 2 + ω 2 exp [ 3 i B C ω 2 2 ( Ξ 2 + ω 2 ) ( Δ 2 ω 2 ) i π 4 ] H ( Δ 2 ω 2 ) ,
q = P 0 = 3 4 ( 1 C 2 ± ( 1 C / 2 ) 2 4 A ) , Δ 2 = C q , Ξ 2 = ( 1 + C ) C 5 3 Δ 2 , T = 3 C D Δ 2 ( Δ 2 + Ξ 2 ) ,
p ( ω ) | e ( ω ) | 2 6 π B Ξ 2 + ω 2 H ( Δ 2 ω 2 ) .
A ζ σ κ , B γ ζ , C α γ β κ , D γ κ .
Π ^ [ a ( z , t ) ] l ɛ l Ω l t e ( Ω l i ω l ) ( t t ) a ( z , t ) d t ,
i ( σ f ( t ) α 2 f ( t ) t 2 ) + q f ( t ) + β 2 f ( t ) t 2 = i Π ^ [ a ( t ) ] + + i κ [ a ( t ) 2 f * ( t ) + 2 | a ( t ) | 2 f ( t ) ζ | a ( t ) | 2 ( 2 a ( t ) 2 f * ( t ) + 3 | a ( t ) | 2 f ( t ) ) ] + + γ ( a ( t ) 2 f * ( t ) + 2 | a ( t ) | 2 f ( t ) ) ,
Π ( ω ) l = 1 N ɛ l 1 i ( ω ω l ) / Ω l 1 + ( ω ω l ) 2 / Ω l 2
f ( ω ) [ i ( σ + α ω 2 ) + q β ω 2 ] = i e ( ω ) l = 1 N ɛ l [ 1 + i ( ω ω l ) Ω l ] 1 + + i 2 π d ω [ ϒ 1 ( ω ω ) f * ( ω ) + ϒ 2 ( ω ω ) f ( ω ) + ϒ 3 ( ω ω ) f * ( ω ) + ϒ 4 ( ω ω ) f ( ω ) ] ,
ϒ 1 B ( 1 D i ) 3 π B ( Δ 2 ω 2 ) C ( Ξ 2 + ω 2 ) exp [ 3 i B C ω 2 4 ( Ξ 2 + ω 2 ) ( Δ 2 ω 2 ) i π 4 ] H ( Δ 2 ω 2 ) ,
ϒ 3 2 B D 3 π B Ξ 2 + ω 2 ( Δ 2 ω 2 ) 3 2 C 3 / 2 exp [ 3 i B C ω 2 4 ( Ξ 2 + ω 2 ) ( Δ 2 ω 2 ) i π 4 ] H ( Δ 2 ω 2 ) .
ϒ 2 2 B ( 1 D i ) P 0 π T 2 ω csch ( π ω T 2 ) ,
ϒ 4 B 2 D P 0 2 π T 2 ω ( 4 + T 2 ω 2 ) csch ( π ω T 2 ) .
p ( ω ) 6 π B Ξ 2 + ω 2 H ( Δ 2 ω 2 ) [ 1 + 2 C B l = 1 N ɛ l Δ 2 ω l 2 ( ω ω l ) / Ω l 1 + ( ω ω l ) 2 / Ω l 2 ] ,
d ω ϒ 1 ( ω ω ) f * ( ω ) = d ω ϒ 2 ( ω ω ) f ( ω ) .
f n ( ω ) = S ( ω ) + 3 T 2 2 ( 1 ω 2 / Δ 2 ) d ω ( ω ω ) csch ( π T 2 ( ω ω ) ) f n 1 ( ω ) , S ( ω ) = i C B ( Δ 2 ω 2 ) e ( ω ) Π ( ω ) , f 0 ( ω ) = S ( ω ) .
p ( ω ) p ( ω ) = 1 + 1 β Δ 2 l = 1 N 2 ɛ l 1 ω l 2 / Δ 2 ( ω ω l ) / Ω l 1 + ( ω ω l ) 2 / Ω l 2 ,
| ɛ l q | = χ l L 2 1 β Δ 2 = χ l L 0.0507 β ( Δ ν ) 2 .
E t a i l E p u l s e 1 β Δ 2 l = 1 N 2 ɛ l π 1 ω l 2 / Δ 2 = 0.05 β ( Δ ν ) 2 l = 1 N S l 1 ω l 2 / Δ 2 ,
E t a i l E p u l s e = ( 0.04 ± 0.01 ) S | β | ( Δ ν ) 2 ,

Metrics