Abstract

We have investigated the plasmonic trapping of dielectric nanoparticles by using engineered gold nanoblock pairs with ~5-nm gaps. Pairs with surface-plasmon resonance peaks at the incident wavelength allow the trapping of 350-nm-diameter nanoparticles with 200 W/cm2 laser intensities, and their plasmon resonance properties and trapping performance are drastically modified by varying the nanoblock size of ~20%. In addition, plasmon resonance properties of nanoblock pairs strongly depend on the direction of the linear polarization of the incident laser, which determines the trapping performance.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
    [CrossRef]
  2. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
    [CrossRef] [PubMed]
  3. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  4. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [CrossRef]
  5. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [CrossRef] [PubMed]
  6. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
    [CrossRef] [PubMed]
  8. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  9. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
    [CrossRef]
  10. Y. Tanaka, H. Ishiguro, H. Fujiwara, Y. Yokota, K. Ueno, H. Misawa, and K. Sasaki, “Direct imaging of nanogap-mode plasmon-resonant fields,” Opt. Express 19(8), 7726–7733 (2011).
    [PubMed]
  11. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [CrossRef] [PubMed]
  12. M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
    [CrossRef]
  13. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [CrossRef]
  14. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
    [CrossRef] [PubMed]
  15. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  16. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
    [CrossRef] [PubMed]
  17. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
    [CrossRef] [PubMed]
  18. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
    [CrossRef]
  19. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
    [CrossRef] [PubMed]
  20. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
    [CrossRef] [PubMed]
  21. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 137–156 (1998).
    [CrossRef] [PubMed]
  22. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
    [CrossRef]
  23. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
    [CrossRef]
  24. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
    [CrossRef] [PubMed]
  25. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
    [CrossRef] [PubMed]

2011

2010

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[CrossRef]

2009

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[CrossRef] [PubMed]

2008

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

2007

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express 15(26), 17736–17746 (2007).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

2006

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

2005

2004

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

2002

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

1999

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

1998

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 137–156 (1998).
[CrossRef] [PubMed]

1997

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

1983

M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Baffou, G.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Fischer, H.

Fujiwara, H.

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Giannini, V.

Girard, C.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Gómez Rivas, J.

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Hosokawa, C.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
[CrossRef] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

Inoue, M.

M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Ishiguro, H.

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Ishikawa, M.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[CrossRef] [PubMed]

Itoh, T.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Juodkazis, S.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
[CrossRef] [PubMed]

Käll, M.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Maerkl, S. J.

Martin, O. J. F.

Masuhara, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
[CrossRef] [PubMed]

Misawa, H.

Mizeikis, V.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett. 30(16), 2158–2160 (2005).
[CrossRef] [PubMed]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Muskens, O. L.

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Ohtaka, K.

M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

Quidant, R.

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[CrossRef]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Sánchez-Gil, J. A.

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Sasaki, K.

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Shoji, T.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Tanaka, Y.

Y. Tanaka, H. Ishiguro, H. Fujiwara, Y. Yokota, K. Ueno, H. Misawa, and K. Sasaki, “Direct imaging of nanogap-mode plasmon-resonant fields,” Opt. Express 19(8), 7726–7733 (2011).
[PubMed]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Ueno, K.

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 137–156 (1998).
[CrossRef] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 137–156 (1998).
[CrossRef] [PubMed]

Yokota, Y.

Y. Tanaka, H. Ishiguro, H. Fujiwara, Y. Yokota, K. Ueno, H. Misawa, and K. Sasaki, “Direct imaging of nanogap-mode plasmon-resonant fields,” Opt. Express 19(8), 7726–7733 (2011).
[PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express 17(21), 18760–18767 (2009).
[CrossRef] [PubMed]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
[CrossRef] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Anal. Biochem.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262(2), 137–156 (1998).
[CrossRef] [PubMed]

J. Chem. Phys.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B 110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[CrossRef]

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[CrossRef]

J. Phys. Soc. Jpn.

M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn. 52(11), 3853–3864 (1983).
[CrossRef]

Nano Lett.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Nat. Photonics

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[CrossRef]

Nat. Phys.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Lett.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[CrossRef]

Phys. Rev. B

G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B 82(16), 165424 (2010).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1), 061410 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83(22), 4534–4537 (1999).
[CrossRef]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88(12), 123601 (2002).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Other

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).

Supplementary Material (4)

» Media 1: MOV (799 KB)     
» Media 2: MOV (3409 KB)     
» Media 3: MOV (813 KB)     
» Media 4: MOV (1326 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup.

Fig. 2
Fig. 2

(a) SEM and (b) transmitted images of an array of pairs of gold nanoblocks with 5-nm gaps. The right side of panel (a) shows a single nanoblock pair.

Fig. 3
Fig. 3

Calculated near-field distributions near a model gold nanoblock pair at an 800-nm incident wavelength. Block size = 80 nm × 80 nm × 30 nm and gap distance = 5 nm. (a) xz plane and (b) yz plane on the pair as shown to the left side of panels (a) and (b), respectively.

Fig. 4
Fig. 4

SEM images of single gold nanoblock pairs with 5-nm gaps (top) and extinction spectra from arrays of the nanoblock pairs (longitudinal polarization) immersed in water (bottom). Nanoblock sizes: (a) 70 nm × 70 nm × 40 nm, (b) 80 nm × 80 nm × 40 nm, (c) 100 nm × 100 nm × 40 nm. Scale bar = 100 nm. The vertical red line in the spectra gives the incident laser wavelength.

Fig. 5
Fig. 5

Optical plasmonic trapping of 350-nm polystyrene particles with nanoblock pairs at the incident laser power of 15-μW. Block sizes: (a) (Media 1) 70 nm × 70 nm × 40 nm, (b) (Media 2) 80 nm × 80 nm × 40 nm, (c) (Media 3) 100 nm × 100 nm × 40 nm. Scale bar = 3 μm. (d) Top: Snapshots taken from (b) (Media 2) at several times: (A) 0.5 s, (B) 1.0 s, (C) 6.0 s, (D) 14.0 s, and (E) 15.0 s. Bottom: Images obtained by subtracting the first frame of the movie from each snapshot. The plasmonic trapping takes place in the red cycles of (d). Bright scattered light is observed around pairs. When nanoparticles pass sufficiently close to pairs, they get trapped and appear as bright scattering centers.

Fig. 6
Fig. 6

(a) Extinction spectra of pairs of nanoblocks of 80 nm × 80 nm × 40 nm in size with longitudinal (blue) and transverse (red) polarizations. (b) (Media 4) Plasmonic trapping of a 350-nm nanoparticle at a 4-μW incident power when the incident polarization is converted from longitudinal to transverse. Scale bar = 3 μm.

Metrics