Abstract

A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and the optical input power injected in an SOA while properly profiting from the dispersion feature of a conveniently designed notch filter. It is shown that the optical filter can be advantageously employed to switch between positive and negative microwave phase shifts. Numerical calculations corroborate the experimental results showing an excellent agreement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
    [CrossRef] [PubMed]
  2. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: Capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  4. R. Jakoby, P. Scheele, S. Müller, and C. Weil, “Nonlinear dielectrics for tunable microwave components.” 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004 2, 369–378, (2004).
  5. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, and A. E. Willner, “Fiber based slow-light technologies,” J. Lightwave Technol. 26(23), 3752–3762 (2008).
    [CrossRef]
  6. T. Baba, “Slow Light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  7. C. J. Chang-Hasnain and S. L. Chuang, “Slow and Fast Light in Semiconductor Quantum Well and Quantum-Dot Devices,” J. Lightwave Technol. 24(12), 4642–4654 (2006).
    [CrossRef]
  8. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. 5(1), 147–159 (1988).
    [CrossRef]
  9. H. Su, P. Kondratko, and S. L. Chuang, “Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers,” Opt. Express 14(11), 4800–4807 (2006).
    [CrossRef] [PubMed]
  10. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, “Enhancing light slow-down in semiconductor optical amplifiers by optical filtering,” Opt. Lett. 33(10), 1084–1086 (2008).
    [CrossRef] [PubMed]
  11. W. Xue, S. Sales, J. Capmany, and J. Mørk, “Wideband 360 ° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers,” Opt. Express 18(6), 6156–6163 (2010).
    [CrossRef] [PubMed]
  12. W. Xue, Y. Chen, F. Öhman, and J. Mørk, “The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers,” Opt. Express 17(3), 1404–1413 (2009).
    [CrossRef] [PubMed]
  13. S. O Dúill, E. Shumakher, and G. Eisenstein, “The role of optical filtering in microwave phase shifting,” Opt. Lett. 35(13), 2278–2280 (2010).
    [CrossRef] [PubMed]
  14. J. Lloret, F. Ramos, W. Xue, J. Sancho, I. Gasulla, S. Sales, J. Mørk, and J. Capmany, “The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters based on SOAs,” J. Lightwave Technol. 29(12), 1746–1752 (2011).
    [CrossRef]

2011

2010

2009

2008

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006

2005

1988

G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. 5(1), 147–159 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. 5(1), 147–159 (1988).
[CrossRef]

Baba, T.

T. Baba, “Slow Light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Boyd, R. W.

Capmany, J.

Chang-Hasnain, C. J.

Chen, Y.

Chuang, S. L.

Eisenstein, G.

Gaeta, A. L.

Gasulla, I.

Gauthier, D. J.

Gehring, G. M.

Kondratko, P.

Ku, P. C.

Lloret, J.

Mørk, J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

O Dúill, S.

Öhman, F.

Ramos, F.

Sales, S.

Sancho, J.

Shumakher, E.

Su, H.

Tucker, R. S.

Willner, A. E.

Xue, W.

J. Lightwave Technol.

J. Opt. Soc. Am.

G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. 5(1), 147–159 (1988).
[CrossRef]

Nat. Photonics

T. Baba, “Slow Light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Science

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Other

R. Jakoby, P. Scheele, S. Müller, and C. Weil, “Nonlinear dielectrics for tunable microwave components.” 15th International Conference on Microwaves, Radar and Wireless Communications, MIKON-2004 2, 369–378, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a RF/microwave phase shifter based on SOA and optical filtering.

Fig. 2
Fig. 2

Illustrations of the evolution of the complex phasors in a polar representation for two cases: (a) when the red-shifted sideband is only attenuated and (b) when it is attenuated and also phase shifted.

Fig. 3
Fig. 3

(a) Calculated RF phase shifts as a function of the injection current as well as the ϕΗ . (b) Maximum values of phase shift as a function of ϕΗ and |H|.

Fig. 4
Fig. 4

Calculated RF phase shifts induced by increasing the optical power at the SOA input as a function of the injection current.

Fig. 5
Fig. 5

Experimental set-up.

Fig. 6
Fig. 6

(a) Measured RF phase shift as a function of both SOA input current and FBG frequency detuning for two different optical powers at the SOA input. (b) Measured FBG amplitude and phase response.

Fig. 7
Fig. 7

Theoretical (lines) and experimental (markers) photodetected RF power and phase shift as function of the SOA input current when the input power is fixed at 0dBm and 2dBm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E o u t ( t , z ) = ( | E 0 o u t | e i ϕ 0 + | E 1 o u t | e i Ω t + i ϕ 1 +   | E 1 o u t | | H | e i Ω t + i ϕ 1 + i ϕ H ) e i ( ω 0 t k 0 z ) ,

Metrics