Abstract

We report the design and simulation results of an adaptive GRIN lens based on multi-electrode addressed blue phase liquid crystal. A high dielectric constant layer helps to smoothen out the horizontal electric field and reduce the operating voltage. Such a GRIN lens is insensitive to polarization while keeping parabolic phase profile as the focal length changes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  2. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22(6), 351–353 (1997).
    [CrossRef] [PubMed]
  3. M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
    [CrossRef]
  4. M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
    [CrossRef]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  6. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [CrossRef] [PubMed]
  7. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
    [CrossRef]
  8. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [CrossRef]
  9. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
    [CrossRef] [PubMed]
  10. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005).
    [CrossRef]
  11. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]
  12. Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
    [CrossRef]
  13. Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
    [CrossRef] [PubMed]
  14. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
    [CrossRef] [PubMed]
  15. Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
    [CrossRef]
  16. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
    [CrossRef]
  17. L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
    [CrossRef]
  18. K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
    [CrossRef]
  19. Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
    [CrossRef]
  20. Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [CrossRef] [PubMed]
  21. D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).
  22. J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
    [CrossRef]
  23. L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
    [CrossRef]
  24. A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
    [CrossRef]
  25. Z. Ge, T. X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid-crystal displays with asymmetric incident and exit angles,” J. Opt. Soc. Am. A 22(5), 966–977 (2005).
    [CrossRef] [PubMed]

2011 (2)

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[CrossRef] [PubMed]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

2010 (4)

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[CrossRef]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Y. Y. Kao, P. C. P. Chao, and C. W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express 18(18), 18506–18518 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

2007 (1)

2006 (1)

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

2005 (3)

2004 (2)

D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

2002 (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1996 (2)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

1990 (1)

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Bos, P. J.

Chao, P. C. P.

Chen, C. W.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
[CrossRef]

Chen, H. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Chen, K. M.

Cheng, H. C.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Chien, L. C.

Choi, Y.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

de Zwart, S. T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

Dekker, T.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Fan, Y. H.

Ferstl, M.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[CrossRef]

Fox, D. W.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Frisch, A.

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[CrossRef]

Gauza, S.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

Z. Ge, T. X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid-crystal displays with asymmetric incident and exit angles,” J. Opt. Soc. Am. A 22(5), 966–977 (2005).
[CrossRef] [PubMed]

Guralnik, I. R.

Haseba, Y.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
[CrossRef]

Hiddink, M. G. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Hsu, H. K.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Hsueh, C. W.

Huang, Y. P.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
[CrossRef]

Jiao, M.

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Kajiyama, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kao, Y. Y.

Kikuchi, H.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kim, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Lee, S. D.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Lee, S. H.

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

Li, J.

Li, W. Y.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Li, Y.

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[CrossRef] [PubMed]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Liang, X.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Lien, A.

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

Lin, H. C.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Lin, Y. H.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Loktev, M. Yu.

Mardare, D.

D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).

Masuda, S.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Nagamura, T.

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
[CrossRef]

Naumov, A. F.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Nose, T.

Park, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Rao, L.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

Ren, H.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Rusu, G.

D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).

Sato, S.

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Shen, T. C.

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
[CrossRef]

Tsou, Y. S.

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

Vdovin, G.

Wang, H.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Willemsen, O. H.

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

Wu, B.

Wu, S. T.

Y. Li and S. T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[CrossRef] [PubMed]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1(1), 151–156 (2005).
[CrossRef]

Z. Ge, T. X. Wu, X. Zhu, and S. T. Wu, “Reflective liquid-crystal displays with asymmetric incident and exit angles,” J. Opt. Soc. Am. A 22(5), 966–977 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29(14), 1608–1610 (2004).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

Wu, T. X.

Xianyu, H.

K. M. Chen, S. Gauza, H. Xianyu, and S. T. Wu, “Submillisecond gray-level response time of a polymer-stabilized blue-phase liquid crystal,” J. Display Technol. 6(2), 49–51 (2010).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

Yamamoto, S.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

Yan, J.

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Zhu, X.

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. Haseba, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in nanostructured chiral liquid-crystal composites over a wide temperature range,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2311–2315 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S. T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94(10), 101104 (2009).
[CrossRef]

L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett. 95(23), 231101 (2009).
[CrossRef]

J. Yan, H. C. Cheng, S. Gauza, Y. Li, M. Jiao, L. Rao, and S. T. Wu, “Extended Kerr effect of polymer-stabilized blue-phase liquid crystals,” Appl. Phys. Lett. 96(7), 071105 (2010).
[CrossRef]

L. Rao, J. Yan, S. T. Wu, S. Yamamoto, and Y. Haseba, “A large Kerr constant polymer-stabilized blue phase liquid crystal,” Appl. Phys. Lett. 98(8), 081109 (2011).
[CrossRef]

A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57(26), 2767–2769 (1990).
[CrossRef]

Y. H. Lin, H. S. Chen, H. C. Lin, Y. S. Tsou, H. K. Hsu, and W. Y. Li, “Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals,” Appl. Phys. Lett. 96(11), 113505 (2010).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

J. Display Technol. (2)

J. Mod. Opt. (1)

M. Ferstl and A. Frisch, “Static and dynamic Fresnel zone lenses for optical interconnections,” J. Mod. Opt. 43(7), 1451–1462 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Optoelectron. Adv. Mater. (1)

D. Mardare and G. Rusu, “Comparison of the dielectric properties for doped and undoped TiO2 thin films,” J. Optoelectron. Adv. Mater. 6, 333–336 (2004).

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1(1), 64–68 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (1)

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21(1-3), 643–646 (2003).
[CrossRef]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Soc. Inf. Display Tech. Dig. (1)

M. G. H. Hiddink, S. T. de Zwart, O. H. Willemsen, and T. Dekker, “Locally switchable 3D displays,” Soc. Inf. Display Tech. Dig. 37(1), 1142–1145 (2006).
[CrossRef]

Soc. Inf. Display Tech. Digest (1)

Y. P. Huang, C. W. Chen, and T. C. Shen, “High resolution autostereoscopic 3D display with scanning multi-electrode driving liquid crystal (MeD-LC) Lens,” Soc. Inf. Display Tech. Digest 40(1), 336–339 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross section of the proposed multi-electrode BPLC lens.

Fig. 2
Fig. 2

Simulated phase profiles across the central 150µm of the lens for e-wave, o-wave, and ideal parabolic shape.

Fig. 3
Fig. 3

Simulated phase profile of the BPLC lens with εdielectric = 120. (a) The maximum voltage is 65V, resulting in 1.1π phase difference. (b) The maximum voltage is 25V, resulting in 0.28π phase difference.

Fig. 4
Fig. 4

Simulated voltage-dependent focal length of the multi-electrode BPLC lens with εdielectric = 80 and 120.

Tables (1)

Tables Icon

Table 1 Simulated Phase and Focal Length at Different Operating Voltages.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ n i n d u c e d ( E ) = Δ n s [ 1 exp ( ( E / E s ) 2 ] ,
n o ( E ) n i s o Δ n i n d u c e d ( E ) / 3 ,
V t o t a l = V B P L C + V d i e l e c t r i c = Q C B P L C + Q C d i e l e c t r i c .
f = R 2 2 δ n ( E ) d L C ,

Metrics